Article Main

Sahira I. H. Al-Sanjary Shafaq Tarik Burhan

Abstract

Oil contamination in soil poses a significant environmental challenge, affecting microbial communities and ecosystem functions. Certain bacterial species have evolved mechanisms to survive and even degrade hydrocarbons in such polluted environments. In this context, the genus Niallia has attracted scientific interest due to its potential in bioremediation. The current research was focused on characterizing and conducting genomic analysis of a novel strain of Niallia sp., accordingly labeled as Niallia sp. SS-2023, obtained from oil-polluted soil alongside electric generators in the Mosul Governorate. Isolates were diagnosed using conventional methods and biochemical tests. The 16S rRNA gene sequencing identification was followed by whole-genome sequencing and bioinformatics analysis. The genome contains 86 contigs, representing 3.78 million base pairs with a GC content of 39.2% and 3,852 protein-coding sequences supported by 60 tRNA genes. Rapid Annotation using Subsystem Technology (RAST)  server analysis identified numerous genes involved in carbohydrate, amino acid, protein, and nucleoside metabolism. Genes linked to aromatic compound metabolism, such as SalA, FAHF, QuiB, and BenK, were found, indicating roles in the degradation of aromatic, anti-inflammatory for salicylate, hydroxylated and metabolic for gentisate, as well as carboxylated and preservative for benzoate.  On the phylogenetic tree, Niallia sp. SS-2023 falls very close to Niallia circulans FDAARGOS_343 and Niallia Taxi M5HDSG1-1T, indicating a high degree of genetic similarity. From these molecular genomic data to phylogenetics, the information reassures that Niallia sp. SS-2023 is promising for application in bioremediation and bioproducts development.


 

Article Details

Article Details

Keywords

16S rRNA, aromatic genes, Niallia spp. , whole genome sequencing

References
Alikhan, N. F., Petty, N. K., Ben Zakour, N. L. & Beatson, S. A. (2011). BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC genomics, 12, 1-10. DOI: 10.1186/1471-2164-12-402
Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M. & Meyer, F. (2008). The RAST Server: rapid annotations using subsystems technology. BMC genomics, 9, 1-15. https://doi.org/10.1186/1471-2164-9-75
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D. & Pyshkin, A.V. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19, 455-477. DOI: 10.1089/cmb.2012.0021
Behrendorff, J. B. (2021). Reductive cytochrome P450 reactions and their potential role in bioremediation. Frontiers in Microbiology, 12, 649273. https://doi.org/10.3389/FMICB.2021.649273 .
Bidja Abena, M. T., Sodbaatar, N., Li, T., Damdinsuren, N., Choidash, B., & Zhong, W. (2019). Crude oil biodegradation by newly isolated bacterial strains and their consortium under soil microcosm experiment. Applied Biochemistry and Biotechnology, 189, 1223-1244. DOI: 10.1007/s12010-019-03058-2
Bohra, V., Tikariha, H. & Dafale, N. A. (2019). Genomically defined Paenibacillus polymyxa ND24 for efficient cellulase production utilizing sugarcane bagasse as a substrate. Applied Biochemistry and Biotechnology, 187, 266-281. https://doi.org/10.1007/s12010-018-2820-5.
Costa, D. M., Gómez, S. V., de Araújo, S. S., Pereira, M. S., Alves, R. B., Favaro, D. C., Hengge, A. C., Nagem, R. A. & Brandão, T. A. (2019). Catalytic mechanism for the conversion of salicylate into catechol by the flavin-dependent monooxygenase salicylate hydroxylase. International Journal of Biological Macromolecules, 129, 588-600. DOI: 10.1016/j.ijbiomac.2019.01.135
Fuchs, G., Boll, M. & Heider, J. (2011). Microbial degradation of aromatic compounds—from one strategy to four. Nature Reviews Microbiology, 9, 803-816. https://doi.org/10.1038/nrmicro2652
Fuentes, S., Méndez, V., Aguila, P. & Seeger, M. (2014). Bioremediation of petroleum hydrocarbons: Catabolic genes, microbial communities, and applications. Applied Microbiology and Biotechnology, 98, 4781–4794. https://doi.org/10.1007/s00253-014-5684-9
Gupta, R. S., Patel, S., Saini, N. & Chen, S. (2020). Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. International Journal of Systematic and Evolutionary Microbiology, 70, 5753-5798. DOI 10.1099/ijsem.0.004475
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29, 1072-1075. DOI: 10.1093/bioinformatics/btt086 .
Hou, Y. J., Guo, Y., Li, D. F. & Zhou, N. Y. (2021). Structural and biochemical analysis reveals a distinct catalytic site of salicylate 5-monooxygenase NagGH from Rieske dioxygenases. Applied and Environmental Microbiology, 87, e01629-20. https://doi.org/10.1128/AEM.01629-20.
Lefort, V., Desper, R. & Gascuel, O. (2015). FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Molecular Biology and Evolution, 32, 2798-2800. DOI: 10.1093/molbev/msv150
Maes, D., Gonzalez-Ramirez, L. A., Lopez-Jaramillo, J., Yu, B., De Bondt, H., Zegers, I., Afonina, E., Garcia-Ruiz, J. M. & Gulnik, S. (2004). Structural study of the type II 3-dehydroquinate dehydratase from Actinobacillus pleuropneumoniae. Biological Crystallography, 60, pp.463-471. https://doi.org/10.1107/S090744490302969X.
Meier-Kolthoff, J. P. & Göker, M. (2019). TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nature Communications, 10, 2182. https://doi.org/10.1038/s41467-019-10210-3
Meier-Kolthoff, J. P., Carbasse, J. S., Peinado-Olarte, R. L. & Göker, M. (2022). TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Research, 50, D801-D807. DOI: 10.1093/nar/gkab902
Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., McNeil,L. K., Paarmann, D., Osterman, A. L., Meyer, F., Formsma, K., Kubal, M., Gerdes, S., Glass, E. M., Prjibelski, A. D., Aziz, R. K., DeJongh, M., Ben Zakour, N. L. & Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42, D206-D214. DOI: 10.1093/nar/gkt1226
Patel, D., Patil, K. S. & Madamwar, D. (2022). Electrogenic degradation of reactive red 152 dye by Niallia circulans DC10 and its genome sequence analysis reveals genes mediating dye degradation and anodic electron transfer. Journal of Water Process Engineering, 47, 102690. https://doi.org/10.1016/j.jwpe.2022.102690.
Srivastava, S. & Dafale, N.A. (2024). Genomic dissection of Niallia sp. for potential application in lignocellulose hydrolysis and bioremediation. Archives of Microbiology, 206, 2. https://doi.org/10.1007/s00203-023-03728-0.
Tamura, K., Stecher, G. & Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022-3027. https:// doi: 10.1093/molbev/msab120.
Thorat, V., Kirdat, K., Tiwarekar, B., Dhanavade, P., Karodi, P., Shouche, Y., Sathe, S., Lodha, T. & Yadav, A. (2022). Paenibacillus albicereus sp. nov. and Niallia alba sp. nov., isolated from digestive syrup. Archives of Microbiology, 204, p.127. https://doi: 10.1007/s00203-021-02749-x.
Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource Technology, 223, 277-286. https://doi.org/10.1016/j.biortech.2016.10.037.
Wojtowicz, K., Steliga, T., Kapusta, P. & Brzeszcz, J. (2023). Oil-Contaminated soil remediation with biodegradation by autochthonous microorganisms and phytoremediation by Maize (Zea mays). Molecules , 28.6104. https://doi.org/10.3390/molecules28166104.
Xu, X., Liu, W., Tian, S., Wang, W., Qi, Q., Jiang, P., Gao, X., Li, F., Li, H. & Yu, H. (2018). Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Frontiers in Microbiology, 9, 2885. https://doi.org/10.3389/fmicb.20 18.02885.
Section
Research Articles

How to Cite

Complete genome sequence of Niallia sp. SS-2023 isolated from oil-contaminated soil in Mosul city, Iraq. (2025). Journal of Applied and Natural Science, 17(2), 663-670. https://doi.org/10.31018/jans.v17i2.6518