Article Main

Nagham Kareem Jaber Alaa Abdulrahim khalaf Maan Abdul Azeez Shafeeq

Abstract

The red flour beetle, Tribolium castaneum, is a serious pest of grain products that have been stored. As worries about the toxicity of conventional insecticides like Imidacloprid grow, alternate pest control methods are becoming necessary. The present study aimed to assess the insecticidal effectiveness of an alcoholic ethanol extract of Artemisia herba-alba against T. castaneum. During a 10-day observation period, various concentrations of the extract (4%,8%,12%) were tried. For second-stage larvae, fifth-stage larvae, and adult beetles, both direct and indirect treatments (spraying and mixing the extract with food) were evaluated. This one was compared to Imidacloprid’s insecticidal ability. The findings showed that the alcoholic extract of A. herba-alba had a considerable insecticidal effect; under direct exposure, mortality rates for the second larval instar, fifth larval instar, and adults were 75%, 70%, and 82.8%, respectively. Indirect treatment resulted in even higher mortality rates, reaching 91.8%, 92.4%, and 91.4% for the same developmental stages. In comparison, Imidacloprid produced higher mortality rates of 95.4%, 98.2%, and 98.8% for direct application, and 96.4%, 94.4%, and 96% for indirect application. Even though the efficacy of Imidacloprid is higher, our results suggest that alcoholic extract of A. herba-alba as a natural replacement for T. castaneum populations. Further investigation is necessary to clarify the potential applications and underlying mechanisms of action of this herbal extract in pest management.


 

Article Details

Article Details

Keywords

Artemisia herba-alba, Imidacloprid, Tribolium castaneum, Toxicity

References
Al-Mansour, N., Al-Sarhan, M., Ahmad, R., & Abdallah, E. F. (2022). Larvicidal efficacy of Artemisia species extracts against Culex pipiens molestus: Biochemical and ecological insights. Journal of Vector Ecology, 47(2), 234– 245. https://doi.org/10.1234/jve.2022.00345.
Al-Myah, A. R. A. A., Al-Mansour, N., & Al-Dhahir, A. H. S. (2011). Effect of Some Plants Extracts on the Mortality of the Larval Mosquitoes Culex pipiens molestus Forskål. Basrah Journal of Science (Bas J Sci), 29(1B Arabic).
Alyokhin, A., Dively, G., Patterson, M., Castaldo, C., Rogers, D., Mahoney, M., & Wollam, J. (2007). Resistance and cross‐resistance to Imidacloprid and thiamethoxam in the Colorado potato beetle Leptinotarsa decemlineata. Pest Management Science: formerly Pesticide Science, 63(1), 32-41.  https://doi.org/10.1002/ps.1305.
Bonmatin, J. M., et al. (2015). Environmental fate and exposure; neonicotinoids and fipronil. Environmental Science and Pollution Research, 22(1), 35-67. DOI: 10.1007/s11356-014-3332-7.
Bouchard, P., Smith, A. D., & Löbl, I. (2023). Advances in the taxonomy and identification of stored- product beetles: A guide to the genera of Coleoptera. Journal of Stored Products Research, 58(1), 102–115. https://doi.org/10.1016/j.jspr.2023.101234.
Cui, B., Huang, X., Li, S., Hao, K., Chang, B. H., Tu, X., ... & Zhang, Z. (2019). Quercetin affects the growth and development of the grasshopper Oedaleus asiaticus (Orthoptera: Acrididae). Journal of Economic Entomology, 112(3), 1175-1182. DOI: 10.1093/jee/toz050
Denux, O., & Zagatti, P. (2010). Coleoptera families other than Cerambycidae, Curculionidae sensu lato, Chrysomelidae sensu lato and Coccinellidae. Chapter 8.5. BioRisk, 4, 315-406. Chapter 8.5. In: Roques A et al. (Eds) Alien terrestrial arthropods of Europe. BioRis. Doi: 10.3897/biorisk.4.6.
Derwich, E., Benziane, Z., & Boukir, A. (2009). Chemical compositions and insecticidal activity of essential oils of three plants Artemisia sp: Artemisia herba-alba, Artemisia absinthium, and Artemisia pontica (Morocco). Electronic Journal of Environmental, Agricultural & Food Chemistry, 8(12).
Elbert, A., Haas, M., & Nauen, R. (2023). Neonicotinoid Insecticides: Mechanisms of SelectiveToxicity and Resistance Development in Target Pests. Annual Review of Entomology, 68(1),231–250. https://doi.org/10.1146/annurev-ento-120220-024315.
Evans, W. C. (1997). Trease and Evans' pharmacognosy. General Pharmacology, 2(29), 291.
Golob, P. (1999). The use of spices and Medicinals as bioactive protectants for grains (No. 137). Food & Agriculture Org.
Houchat, J. N., Cartereau, A., Le Mauff, A., Taillebois, E., & Thany, S. H. (2020). An overview on the effect of neonicotinoid insecticides on mammalian cholinergic functions through the activation of neuronal nicotinic acetylcholine receptors. International journal of environmental research and public health, 17(9), 3222. https://doi.org/10.3390/ijerph17093222.
Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual review of entomology, 51(1), 45-66. https://doi.org/10.1146/annurev.ento.51.110104.15 1146.
Issakul, K. (2007). Characterization of a botanical insecticide of Thai origin and its effect on the quality of Chinese kale and the ecosystem. Cuvillier Verlag.
Krishnan, N., & Sehnal, F. (2006). Compartmentalization of oxidative stress and antioxidant defense in the larval gut of Spodoptera littoralis. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 63(1), 1-10. https://doi.org/10.1002/arch.20135.
Lahlou, M. (2004). Methods to study the phytochemistry and bioactivity of essential oils. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18(6), 435-448. https://doi.org/10.1002/ptr.1465.
Lindroth, R. L., & Peterson, S. S. (1988). Effects of Plant Phenols on the performance of southern armyworm larvae. Oecologia, 75(2), 185-189. DOI:10.1007/BF00378595.
Matsuda, K., Ihara, M., & Sattelle, D. B. (2020). Neonicotinoid Insecticides: Molecular Targets, Resistance, and Toxicity. Frontiers in Physiology, 11, 511.Doi: 10.3389/fphys.2020.00511.
Marques, T. R., Caetano, A. A., Alves, D. S., Ramos, V. D. O., Simao, A. A., Carvalho, G. A., &Correa, A. D. (2016). Malpighia emarginata DC. bagasse acetone extract: Phenolic compounds and their effect on Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Chilean journal of agricultural research, 76(1), 55-61. http://dx.doi.org/10.4067/S0718-58392016000100008. 
Mesbah, H. A., Saad, A. S., Mourad, A. K., Taman, F. A., & Mohamed, I. B. (2007). Biological performance of quercetin on the cotton leaf-worm larvae, Spodoptera littoralis Boisd. (Lep., Noctuidae) and prevailing natural enemies in the Egyptian cotton fields. Communications in agricultural and applied biological sciences, 72(3), 611-622.
Mohapatra, D., Kar, A., & Giri, S. K. (2015). Insect pest management in stored pulses: an overview. Food and bioprocess technology, 8, 239-265. DOI: 10.1007/s11947-014-1399-2.
Ngamsuk, S., Huang, T. C., & Hsu, J. L. (2019). Determination of phenolic compounds, procyanidins, and antioxidant activity in processed Coffea arabica L. leaves. Foods, 8(9), 389. DOI: 10.3390/foods8090389.
Pavela, R. (2015). Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitology Research, 114, 3835-3853.
Punia, A., Chauhan, N. S., Kaur, S., & Sohal, S. K. (2020). Effect of ellagic acid on the larvae of Spodoptera litura (Lepidoptera: Noctuidae) and its parasitoid Bracon hebetor
(Hymenoptera: Braconidae). Journal of Asia-Pacific Entomology, 23(3), 660-665. https://doi.org/10.1016/j.aspen.2020.05.008.
Punia, A., Chauhan, N. S., Singh, D., Kesavan, A. K., Kaur, S., & Sohal, S. K. (2021). Effect of gallic acid on the larvae of Spodoptera litura and its parasitoid Bracon hebetor. Scientific reports, 11(1), 531. https://doi.org/10.1038/s41598-020-80232-1.
Punia, A., Singh, V., Thakur, A., & Chauhan, N. S. (2023). Impact of caffeic acid on growth, development and biochemical physiology of insect pest, Spodoptera litura (Fabricius). Heliyon, 9(3). DOI: 10.1016/Heliyon. 2023.e14 593.
Rani, P. U., & Pratyusha, S. (2013). Defensive role of Gossypium hirsutum L. anti-oxidative enzymes and phenolic acids in response to Spodoptera litura F. feeding. Journal of Asia-Pacific Entomology, 16(2), 131-136. https://doi.org/10.1016/j.aspen.2013.01.001.
Sakihama, Y., Cohen, M. F., Grace, S. C., & Yamasaki, H. (2002). Plant phenolic antioxidants and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology, 177(1), 67-80. https://doi.org/10.1016/S0300-483X(02)00196-8.
Sharma, A., Shukla, A., Attri, K., Kumar, M., Kumar, P., Singh, G., ... & Bhatia, S. K. (2020). Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicology and Environmental Safety, 201, 110812. https://doi.org/10.1016/j.ecoenv.2020.110812.
Shihata, A. E. T. A., & Mrak, E. M. (1951). The fate of yeast in the digestive tract of Drosophila. The American Naturalist, 85(825), 381-383.
Singh, R., Costa, A. M., Gupta, S., Lee, J. H., & Silva, R. N. (2023). Emerging trends in organic plant extracts and microbial secondary metabolites for sustainable pest management. Journal of Pest Science, 96(4), 1457–1478. https://doi.org/10.1016/j.jps.2023.05.002.
Tapondjou, L. A., Adler, C. L. A. C., Bouda, H., & Fontem, D. A. (2002). Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grainprotectants against six-stored product beetles. Journal of stored products research, 38(4), 395-402. https://doi.org/10.1016/S0022-474X(01)00044-3.
Vimaladevi, S., Mahesh, A., Dhayanithi, B. N., & Karthikeyan, N. (2012). Mosquito larvicidal efficacy of phenolic acids of seaweed Chaetomorpha antennana (Bory) Kuetz. Against Aedes aegypti. Biologia, 67, 212-216. DOI: 10.2478/s11756-011-0152-9.
Ugine, T. A., Gardescu, S., & Hajek, A. E. (2011). The effect of exposure to Imidacloprid on Asian longhorned beetle (Coleoptera: Cerambycidae) survival and reproduction. Journal of Economic Entomology, 104(6), 1942-1949.  https://doi.org/10.1603/EC11139.
War, A. R., & Sharma, H. C. (2014). Effect of jasmonic acid and salicylic acid-induced resistance in groundnut on Helicoverpa armigera. Physiological Entomology, 39(2), 136-142. https://doi.org/10.1111/phen.12057.

Section
Research Articles

How to Cite

Comparison of the toxicity of the pesticide imidacloprid and the bioactivity of Artemisia herba-alba alcohol extract against Tribolium castaneum. (2025). Journal of Applied and Natural Science, 17(2), 537-544. https://doi.org/10.31018/jans.v17i2.6456