Article Main

Shadrack Kwadwo Amponsah Felix Frimpong Eric Owusu Danquah Patricia Amankwaa-Yeboah Natson Eyram Amengor Joel Adu Theophilus Frimpong

Abstract

Biochar has gained attention due to its potential to improve soil carbon storage and mitigate climate change. However, to encourage widespread adoption, biochar production must be cost-efficient and easily accessible, particularly from farm residues. The present study evaluates the performance of a self-energy-recirculating, locally fabricated biochar kiln using five feedstocks: maize cob, rice husk, coconut shell, and flamboyant pods. The specialised kiln can char all organic-based feedstocks, regardless of the particle size. The focus was on energy use efficiency, biochar yield, and the quality of the produced biochar. The study used a slow pyrolysis ranging from 300 ˚C to 600 ˚C. Results showed that biochar quality varied across feedstocks, with coconut shells and rice husks requiring more energy but yielding higher amounts of biochar than flamboyant pods, maize cob, and maize stover. Economic analysis indicated that coconut shells and maize cob were the most profitable feedstocks, with profit margins of 57.05% and 76.96% and internal rates of return of 3.75 and 1.84, respectively. This suggests that while some feedstocks are more energy-intensive, they offer higher financial returns. Further studies on the environmental benefits of these biochars, both short-term and long-term, are necessary. The findings of this study provide a basis for the development of kilns suited to local conditions, promoting the economical production of biochar from agricultural residues.


 

Article Details

Article Details

Keywords

Locally fabricated biochar kiln, Biochar production efficiency, Farm residue, Climate change mitigation

References
Aguirre, J., Gonzalez-Egido, S., Gonzalez, M., & González Pernas, F. (2023). Medium-term effects and economic analysis of biochar application in three Mediterranean crops. Energies (Basel), 16, 4131. https://doi.org/10.3390/en16104131
Alawa, B., Singh, S., Chakma, S., Kishor, R., Stålsby Lundborg, C., & Diwan, V. (2025). Development of novel biochar adsorbent using agricultural waste biomass for enhanced removal of ciprofloxacin from water: Insights into the isotherm, kinetics, and thermodynamic analysis. Chemosphere, 375, 144252. https://doi.org/https://doi.org/10.1016/j.chemosphere.2025.144252
Amponsah, S. K., Asare, H., Okyere, H., Owusu-Asante, J. O., Minkah, E., & Ketemepi, H. K. (2022). Performance characterization of a locally developed fish smoke-drying kiln for charcoal and briquette. Journal of Agricultural Science, 14(11), 43. https://doi.org/10.5539/jas.v14n11p43
Aung, K. Y., Li, Q., Wei, M., Chen, F., & Yan, T. (2024). Unlocking the potential of rice husk pyrolysis oil: Dual production of high-energy solid fuel and Fe2+ detecting carbon nanodots for environmental application. Journal of Analytical and Applied Pyrolysis, 183, 106724. https://doi.org/https://doi.org/10.1016/j.jaap.2024.106724
Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., & Bhaskar, T. (2017). Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw, and rice husk. Bioresource Technology, 237, 57-63. https://doi.org/10.1016/j.biortech.2017.02.046
Blenis, N., Hue, N., Maaz, T., & Kantar, M. (2023). Biochar production, modification, and its uses in soil remediation: A review. Sustainability, 15, 3442. https://doi.org/10.3390/su15043442
Brauch, H. G., Oswald Spring, Ú., Grin, J., Scheffran, J., Mesjasz, C., Kameri-Mbote, P., & Krummenacher, H. (2019). Global environmental change: A factor contributing to violent conflict. International Journal of Environmental Research and Public Health, 16(19), 3676. https://doi.org/10.3390/ijerph16193676
Campion, L., Bekchanova, M., Malina, R., & Kuppens, T. (2023). The costs and benefits of biochar production and use: A systematic review. Journal of Cleaner Production, 408, 137138. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.137138
Chaudhary, H., Dinakaran, J., & Rao, K. S. (2024). Comparative analysis of biochar production methods and their impacts on biochar physico-chemical properties and adsorption of heavy metals. Journal of Environmental Chemical Engineering, 12(3), 113003. https://doi.org/https://doi.org/10.1016/j.jece.2024.113003
Chen, W., Wu, Z., Liu, C., Zhang, Z., & Liu, X. (2023). Biochar combined with Bacillus subtilis SL-44 as an eco-friendly strategy to improve soil fertility, reduce Fusarium wilt, and promote radish growth. Ecotoxicology and Environmental Safety, 251, 114509. https://doi.org/https://doi.org/10.1016/j.ecoenv.2023.114509
Dambaulova, G. K., Madin, V. A., Utebayeva, Z. A., Baimyrzaeva, M. K., & Shora, L. Z. (2023). Benefits of automated pig feeding system: A simplified cost-benefit analysis in the context of Kazakhstan. Veterinary World, 16(11), 2205-2209. https://doi.org/10.14202/vetworld.2023.2205-2209
Dai, L., Lu, Q., Zhou, H., Shen, F., Liu, Z., Zhu, W., and Huang, H. (2021). Tuning oxygenated functional groups on biochar for water pollution control: A critical review. In Journal of Hazardous Materials (Vol. 420). Elsevier B.V. https://doi.org/10.1016/j.jhazmat.2021.126547
Danso, F., Agyare, W. A., & Bart-Plange, A. (2023). Benefits and costs of cultivating rice using biochar-inorganic fertilizer combinations. Journal of Agriculture and Food Research, 11, 100491. https://doi.org/https://doi.org/10.1016/j.jafr.2022.100491
Dhingra, G., & Kumar, A. (2025). Carbon Capture and Sequestration: Cutting-Edge Technologies to Combat Climate Change. Sustainable Energy Technologies and Assessments, 75, 104226. https://doi.org/https://doi.org/10.1016/j.seta.2025.104226
Fan, Y., Lv, G., Chen, Y., Chang, Y., & Li, Z. (2023). Differential effects of cow dung and its Biochar on Populus euphratica soil phosphorus effectiveness, bacterial community diversity, and functional genes for phosphorus conversion. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1242469
FAO. (2017). The State of Food and Agriculture 2017. Moving forward on food loss and waste reduction. Food and Agriculture Organization of the United Nations. https://doi.org/10.18356/24c57989-en
Geronimo, C., Vergara, S. E., Chamberlin, C., & Fingerman, K. (2022). Overlooked emissions: Influence of environmental variables on greenhouse gas generation from woody biomass storage. Fuel, 319, 123839. https://doi.org/https://doi.org/10.1016/j.fuel.2022.123839
Gezahegn, S., Sain, M., & Thomas, S. C. (2019). Variation in feedstock wood chemistry strongly influences Biochar liming potential. Soil Systems, 3(2), 1-16. https://doi.org/10.3390/soilsystems3020026
Guvava, G., Manyuchi, M., Sukdeo, N., & Mbohwa, C. (2022). Sewage sludge valorisation to biochar through carbonization as a way of promoting a circular economy in municipal sewage plants. https://doi.org/10.46254/IN02.20220601
Ha, R. R. (2025). Methodology: Cost-benefit analysis. In Reference Module in Life Sciences. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-443-29068-8.00100-8
Hidayah, E., Widiarti, W. Y., Wiyono, R. U. A., Dermawan, V., Fadhilah, D., & Tahir, W. (2024). Benefit–cost analysis of a low-impact development design. Water Practice and Technology, 19(2), 502-518. https://doi.org/10.2166/wpt.2024.017
Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Wade, P., & Bolan, N. (2021). Assessment of the fertilizer potential of biochars produced from slow pyrolysis of biosolid and animal manures. Journal of Analytical and Applied Pyrolysis, 155, 105043. https://doi.org/https://doi.org/10.1016/j.jaap.2021.105043
Huang, M., Hu, T., Wang, J., Ding, Y., Köster, K., & Sun, L. (2024). Effects of biochar on soil carbon pool stability in the Dahurian larch (Larix gmelinii) forest are regulated by the dominant soil microbial ecological strategy. Science of The Total Environment, 951, 175725. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.175725
Ippolito, J. A., Laird, D. A., Busscher, W. J., Novak, J. M., Ahmedna, M., Rehrah, D., ... & Watts, D. B. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Springer Science and Business Media B. V. https://doi.org/10.1007/s42773-020-00067-x
Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., & Lehmann, J. (2015). An investigation into the reactions of biochar in soil. Soil Research, 53(3), 129-138. https://doi.org/10.1071/SR14129
JASP Team (2024). JASP (Version 0.19.0)[Computer software]. https://jasp-stats.org/
Keske, C., Godfrey, T., Hoag, D. L. K., & Abedin, J. (2020). Economic feasibility of biochar and agriculture coproduction from Canadian black spruce forest. Food and Energy Security, 9(1). https://doi.org/10.1002/fes3.188
Kolog, J. D., Asem, F. E., & Mensah-Bonsu, A. (2023). The state of food security and its determinants in Ghana: an ordered probit analysis of the household hunger scale and household food insecurity access scale. Scientific African, 19, e01579. https://doi.org/https://doi.org/10.1016/j.sciaf.2023.e01579
Kumar, A., Kushwaha, K. K., Singh, S., Shivay, Y. S., Meena, M. C., & Nain, L. (2019). Effect of paddy straw burning on soil microbial dynamics in sandy loam soil of Indo-Gangetic plains. Environmental Technology & Innovation, 16, 100469. https://doi.org/https://doi.org/10.1016/j.eti.2019.100469
Luwaya E., Mukanda M., Banda E., and Msimuko S. (2015). Effect of moisture content and log diameter). HEFAT2015. 11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics. 20 – 23 July 2015. Kruger National Park, South Africa. Retrieved from https://www.researchgate.net/publication/380357188
Martins, I. S., Fraga, G., Zhou, S., Sakheta, A., Ramirez, J., & O’Hara, I. (2025). Techno-economic analysis of hydrogen production in the sugarcane industry by steam reforming of ethanol with carbon capture. Energy Conversion and Management, 328, 119635. https://doi.org/https://doi.org/10.1016/j.enconman.2025.119635
Merida, V. E., Cook, D., Ögmundarson, Ó., & Davíðsdóttir, B. (2024). An environmental cost-benefit analysis of organic and non-organic sheep farming in Iceland. Journal of Agriculture and Food Research, 18, 101472. https://doi.org/https://doi.org/10.1016/j.jafr.2024.101472
Mia, S., Uddin, N., Mamun Hossain, S. A. Al, Amin, R., Mete, F. Z., & Hiemstra, T. (2015). Production of Biochar for Soil Application: A Comparative Study of Three Kiln Models. Pedosphere, 25(5), 696–702. https://doi.org/https://doi.org/10.1016/S1002-0160(15)30050-3
Mittal, Y., Srivastava, P., Kumar, N., Kumar, M., Singh, S. K., Martinez, F., & Yadav, A. K. (2023). Ultra-fast and low-cost electroactive biochar production for electroactive-constructed wetland applications: A circular concept for plant biomass utilization. Chemical Engineering Journal, 452, 138587. https://doi.org/https://doi.org/10.1016/j.cej.2022.138587
Mukherjee, A., Lal, R., & Zimmerman, A. R. (2014). Impacts of Biochar and other amendments on soil-carbon and nitrogen stability: a laboratory column study. Soil Science Society of America Journal, 78(4), 1258-1266. https://doi.org/10.2136/sssaj2013.11.0488
Mustika, F., Utomo, D. H., Astina, I. K., & Susilo, S. (2025). Correlation between global warming mitigation knowledge, attitudes, and community behavior in mangrove forests in Langsa City, Indonesia. Cleaner Waste Systems, 10, 100238. https://doi.org/https://doi.org/10.1016/j.clwas.2025.100238
Ng, W. C., You, S., Ling, R., Gin, K. Y.-H., Dai, Y., & Wang, C.-H. (2017). Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis. Energy, 139, 732–742. https://doi.org/https://doi.org/10.1016/j.energy.2017.07.165
Ortega, A., Reyes Tovar, M., & Marrufo, O. (2023). Effects of soil-applied biochar and compost mixtures on maize yield and soil organic matter. Scientific Reports, 13, 8823. https://doi.org/10.1038/s41598-023-35934-y
Othman, F. E. C., Nordin, N. A. H. Md., Ismail, N., Zakria, H. S., Junoh, H., & Aziz, Mohd. H. Abd. (2024). A review on sustainable graphene production from rice husks: Strategies and key considerations. Chemical Engineering Journal, 497, 154408. https://doi.org/https://doi.org/10.1016/j.cej.2024.154408
Owusu Danquah, E., Ennin, S., & Acheampong, P. P. (2017). Integrated soil nutrient management option for sustainable yam production. Agronomie Africaine Sp. 29 (2): 69 - 81 (2017). Retrieved from https://www.researchgate.net/publication/321724704
Patel, M. R., & Panwar, N. L. (2024). Development, process optimization and assessment of sustainable mobile biochar kiln for agricultural use. Journal of Cleaner Production, 477, 143866. https://doi.org/https://doi.org/10.1016/j.jclepro.2024.143866
Phuong, P.-T. H., Nghiem, T.-D., Thao, P.-T. M., Pham, C.-T., Thi, T.-T., & Thanh Dien, N. (2021). Impact of rice straw open burning on local air quality in the Mekong Delta of Vietnam. Atmospheric Pollution Research, 12(11), 101225. https://doi.org/https://doi.org/10.1016/j.apr.20 21.101225
Rhymes, J. M., Evans, D., Laudone, G., Schofield, H. K., Fry, E., & Fitzsimons, M. F. (2024). Biochar improves fertility in waste derived manufactured soils, but not resilience to climate change. Science of The Total Environment, 923, 171387. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.171387
Sarode, D. D., Oak, R. S., & Joshi, J. B. (2023). Chapter 10 - Conversion of agriculture, forest, and garden waste for alternate energy source: Bio-oil and biochar production from surplus agricultural waste. In S. Verma, R. Khan, M. Mili, S. A. R. Hashmi, & A. K. Srivastava (Eds.), Advanced Materials from Recycled Waste (pp. 199–220). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-85604-1.00006-8
Singh, R., Goyal, A., & Sinha, S. (2025). Global insights into biochar: Production, sustainable applications, and market dynamics. Biomass and Bioenergy, 194, 107663. https://doi.org/https://doi.org/10.1016/j.biombioe.2025.107663
Singh, B., Shen, Q., Arbestain, M. C., Dolk, M. M., and Camps-Arbestain, M. (2017). Chapter 3. Biochar pH, electrical conductivity and liming potential 3 Biochar pH, electrical conductivity and liming potential. https://www.researchgate.net/publication/319206365
Shittu, O. A., Oyi, A. R., Isah, A. B., Kareem, S. O., & Ibrahim, M. A. (2012). Formulation and Evaluation of Microcrystalline Tapioca Starch as a Filler-Binder for Direct Compression. International Journal of Pharmaceutical Sciences and Research, 3(7), 2180-2190. https://doi.org/https://doi.org/10.106/.2021.101225
Tan, Z., Liu, T., & Tan, X. (2023). Integrated impacts of biochar and compost on soil properties and crop productivity. Journal of Environmental Management, 337, 118946. https://doi.org/10.1016/j.jenvman.2023.118946
Tan, S., Zhou, G., Yang, Q., Ge, S., Liu, J., Cheng, Y. W., Yek, P. N. Y., Wan Mahari, W. A., Kong, S. H., Chang, J.-S., Sonne, C., Chong, W. W. F., & Lam, S. S. (2023). Utilization of current pyrolysis technology to convert biomass and manure waste into biochar for soil remediation: A review. Science of The Total Environment, 864, 160990. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.16 0990
Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122
Ullah, S., Ali, I., Jiang, L., & Yang, M. (2024). Chapter 14 - Environmental benefits of biochar under changing climate: biochar, a new technology for restoring contaminated and degraded soils. In S. Fahad, M. Adnan, S. Saud, T. Nawaz, & R. Zhou (Eds.), Biochar-assisted Remediation of Contaminated Soils Under Changing Climate (pp. 353–376). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-443-21562-9.00014-1
Unsomsri, N., Sriwilai, W., Wiriyasart, S., Sriromreun, P., & Kaewluan, S. (2025). Impact of kiln capacity on environment friendly biochar yield and biochar characteristics from rubberwood scrap using a modified cross draft biomass gasifier and burner as heat source. Case Studies in Chemical and Environmental Engineering, 101178. https://doi.org/https://doi.org/10.1016/j.cscee.2025.101178
Urdaneta, F., Kumar, R., Marquez, R., Vera, R. E., Franco, J., Urdaneta, I., Saloni, D., Venditti, R. A., Pawlak, J. J., Jameel, H., & Gonzalez, R. W. (2024a). Evaluating chemi-mechanical pulping processes of agricultural residues: High-yield pulps from wheat straw for fiber-based bioproducts. Industrial Crops and Products, 221, 119379. https://doi.org/https://doi.org/10.1016/j.indcrop.2024.119379
Urdaneta, F., Kumar, R., Marquez, R., Vera, R. E., Franco, J., Urdaneta, I., Saloni, D., Venditti, R. A., Pawlak, J. J., Jameel, H., & Gonzalez, R. W. (2024b). Evaluating chemi-mechanical pulping processes of agricultural residues: High-yield pulps from wheat straw for fiber-based bioproducts. Industrial Crops and Products, 221, 119379. https://doi.org/https://doi.org/10.1016/j.indcrop.2024.119379
Wambogo, E. A., Ghattas, H., Leonard, K. L., & Sahyoun, N. R. (2018). Validity of the Food Insecurity Experience Scale for Use in Sub-Saharan Africa and Characteristics of Food-Insecure Individuals. Current Developments in Nutrition, 2(9), nzy062. https://doi.org/https://doi.org/10.1093/cdn/nzy062
Wang, K., Hou, J., Zhang, S., Hu, W., Yi, G., Chen, W., Cheng, L., & Zhang, Q. (2023). Preparation of a new biochar-based microbial fertilizer: Nutrient release patterns and synergistic mechanisms to improve soil fertility. Science of The Total Environment, 860, 160478. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.160478
Wang, S., Li, T., Yuan, X., Yu, J., Luan, Z., Guo, Z., Yu, Y., Liu, C., & Duan, C. (2025). Biotic and abiotic drivers of soil carbon, nitrogen and phosphorus and metal dynamic changes during spontaneous restoration of Pb–Zn mining wastelands. Journal of Hazardous Materials, 137818. https://doi.org/https://doi.org/10.1016/j.jhazmat.2025.137818
Wu, Q., Zhang, J., Liu, J., Xue, Z., Du, B., Ma, S., & Liang, X. (2017). Characterizing differences in the phosphorus activation coefficient of three typical cropland soils and the influencing factors under long-term fertilization. PLoS ONE, 12(5), e0176437. https://doi.org/10.1371/journal.pone.0176437
You, S., & Wang, X. (2019). Chapter 20 - On the Carbon Abatement Potential and Economic Viability of Biochar Production Systems: Cost-Benefit and Life Cycle Assessment. In Y. S. Ok, D. C. W. Tsang, N. Bolan, & J. M. Novak (Eds.), Biochar from Biomass and Waste (pp. 385–408). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-811729-3.00020-0
Yue, Y., Lin, Q., Xu, Y., Li, G., & Zhao, X. (2017). Slow pyrolysis as a measure for rapidly treating cow manure and the biochar characteristics. Journal of Analytical and Applied Pyrolysis, 124, 355–361. https://doi.org/https://doi.org/10.1016/j.jaap.2017.01.008
Zhang, J., Ge, X., Qiu, X., Liu, L., Mulder, J., & Duan, L. (2024). Estimation of carbon sequestration potential and air quality impacts of biochar production from straw in China. Environmental Pollution, 363, 125304. https://doi.org/https://doi.org/10.1016/j.envpol.2024.125304

Section
Research Articles

How to Cite

Performance and economic evaluation of a locally fabricated biochar kiln for sustainable production from agricultural residues in Ghana. (2025). Journal of Applied and Natural Science, 17(2), 622-637. https://doi.org/10.31018/jans.v17i2.6427