Vibha Nehra Madhu Choudhary


Plant growth promoting rhizobacteria are the soil bacteria inhabiting around/on the root surface and are directly or indirectly involved in promoting plant growth and development via production and secretion of various regulatory chemicals in the vicinity of rhizosphere. There has been much research interest in PGPB and there is now an increasing number of PGPB being commercialized for various crops. Today a lot of efforts have been made for searching and investigating the PGPB and their mode of action, so that they can be exploited commercially as biofertilizers. Because of the various challenges faced in screening, formulation, and application, PGPB have yet to fulfill their promise and potential as commercial inoculants. Recent progress in our understanding of their diversity, colonization ability, mechanisms of action, formulation, and application should facilitate their development as reliable
components in the management of sustainable agricultural systems. Several reviews have discussed specific aspects of PGPB as bioinoculants. We have tried to critically evaluate the current status of bacterial inoculants for contemporary agriculture in developed and developing countries. This review focuses on some important information regarding the biofertilizing potential of some important group of microbes, their formulations, their application for the development of sustainable technology, scope of improvement by genetic engineering, steps to be undertaken for their commercialization and their future prospects.


Download data is not yet available.


Metrics Loading ...




Beneficial bacteria, Bioinoculants, PGPB, Carrier, Formulation, Sustainable agriculture

Adesemoye, A.O., Obini, M. and Ugoji, E.O. (2008). Comparison of plant growyh promotion with Pseudomonas aerugenosa and Bacillus subtilis in three vegetables. Brazilian J. Microbiol., 39:423-426.
Ahemad, M. and Khan, M.S. (2009). Effect of insecticide-tolerant and plant growth promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci. Biotechnol., 12: 213–222.
Ahemad, M. and Khan, M.S.(2010a). Growth promotion and protection of lentil (Lens esculenta) against herbicide stress by Rhizobium species. Ann. Microbiol., 60: 735-745.
Ahemad, M. and Khan, M.S. (2010b). Ameliorative effects of Mesorhizobium sp. MRC4 on chickpea yield and yield components under different doses of herbicide stress. Pest. Biochem. Physiol., 98: 183-190.
Ahemad, M. and Khan, M.S.(2010c). Insecticide-tolerant and plant-growth-promoting Rhizobium improves the growth of lentil (Lens esculentus) in insecticide-stressed soils. Pest Manage. Sci., 67: 423-429.
Ahemad, M. and Malik, A. (2011). Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol. J., 2: 12–2.
Ahemad, M. (2012). Implications of bacterial resistance against heavy metals in bioremediation: a review. IIOABJ., 3: 39–46.
Ahemad, M. and Khan, M.S. (2012). Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4 J. Saudi Soc. Agric. Sci., 11: 63–71.
Ahemad, M. and Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. king Saud Univ Sci., 26(1): 1-20.
Ajay, K., Rawlat, A.K., Verman, L.N., Khare, A.K. and Kaushal, A. (1996). Oxalic acid industrial waste as a carrier for Rhizobium inoculants and its effect on soybean. J. Indian Society Soil Sci., 44: 249–252.
Alexandre-Franco, M., Albarran-Liso, A. and Gomez-Serrano, V. (2011). An identification study of vermiculites and micas: Adsorption of metal ions in aqueous solution. Fuel Processing Tech., 92(2): 200-205.
Amer, G.A. and Utkhede, R.S. (2000). Development of formulations of biological agents for management of root rot of lettuce and cucumber. Canadian J. Microbiol., 46: 809-816.
Anandaraj, B. and Delapierre, A.L.R. (2010). Studies in influence of bioinoculants (Pseudomonas fluorescens, Rhizobium sp., Bacillus megaterium) in green gram. J. Biosci. Tech., 1(2): 95-99.
Anjum, M.A., Sajjad, M.R., Akhtar, N., Qureshi, M., Iqbal, A., Rehman, J.A. and Mahmud-ul-Hasan (2007). Response of cotton to plant growth promoting rhizobacteria (PGPR) inoculation under different levels of nitrogen. J. Agric. Res., 45: 135-143.
Antoun, H. and Pre´vost, D. (2005). Ecology of plant growth promoting rhizobacteria. In: Siddiqui, Z.A. (ed) PGPR: biocontrol and biofertilization. Dordrecht., 1–38.
Ashraf, M., Hasnain, S., Berge, O. and Mahmood, T. (2004). Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. J. Food Sci., 71(3): 89–99.
Badawi, F.S.F., Biomy, A.M.M. and Desoky, A.H. (2011). Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Annls. Agric. Sci., 56(1):17-25.
Bai, Y.M., Zhou, X. and Smith, D.L. (2003). Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci., 43:1774-1781.
Bandara, W.M.M.S.; Seneviratne, G. and Kulasooriya, S.A. (2006). Interactions among endophytic bacteria and fungi: effects and potentials. J Bioscience, 31(5): 645–650.
Bargali, K. (2011). Screening of leguminous plants for VAM association and their role in restoration of degraded lands. J. American Sci., 7(1): 7-11.
Bashan, Y. (1986). Alginate beads as synthetic inoculant carriers for the slow release of bacteria that affect plant growth. Appl. Environ. Microbiol. 51:1089-1098.
Bashan, Y., Levanony, H. and Ziv–Vecht, O. (1987). The fate of field-inoculated Azospirillum brasilense Cd in wheat rhizosphere during the growing season. Can. J. Microbiol., 33:1074-1079.
Bashan, Y., Holguin, G. and Puente, M.E. (1992). Alternativa agricola regional por fertilizantes bacterianos. In: Ortega, A. (ed) Uso y Manejo de los Recursos Naturales en la Sierra de la Laguna Baja California Sur, CIB Press, La Paz, Mexico. (in Spanish), pp 47-67.
Bashan, Y. and Holguin, G. (1997). Azospirillum-plant relationships: Environmental and physiological advances (1990–1996). Can. J. Microbiol., 43: 103–121.
Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. Biotech. Adv., 16:729-770.
Bashan, Y., Luis, A.J.P.H. and Bacilio, L.M. (2002). Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol. Fertil. Soils, 35: 359-368.
Bazilah, A.B.I., Sariah, M., Abidin, M.A.Z. and Yasmeen, S. (2011). Effect of carrier and temperature on the viability of Burkholderia sp. (UPMB3) and Pseudomonas sp. (UPMP3) during Storage. Int. J. Agri. Biol., 13:198–202.
Beneduzi, A., Peres, D., Vargas, L.K., Bodanese-Zanettini, M.H. and Passaglia L.M.P. (2008). Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing Bacilli isolated from rice fields in South Brazil. Appl. Soil Ecol., 39: 311–320.
Bhattacharyya, P.N. and Jha D.K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol., 28: 1327–1350.
Biswas, B. and Gresshoff, P.M. (2014). The role of symbiotic nitrogen fixation in sustainable production of biofuels. Int. J. Mol. Sci., 15: 7380-7397.
Bissonnette, N., Lalande, R. and Bordeleau, L.M. (1986). Large-scale production of Rhizobium meliloti on whey. Appl. Env. Microbiol., 52: 838–841.
Bissonnette, N. and Lalande, R. (1988). High survivability of cheese whey-grown Rhizobium meliloti cells upon exposure to physical stress. Appl. Env. Microbiol., 54: 183–187.
Black, M., Moolhuijzen, P., Chapman, B.; Barrero, R.; Howieson, J., Hungria, M. and Bellgard, M. (2012). The genetics of symbiotic nitrogen fixation: comparative genomics of 14 Rhizobia strains by resolution of protein clusters. Genes, 3: 138-166.
Bora, T., Ozaktan, H., Gore. E and Aslan, E. (2004). Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. J. Phytopathol., 152: 471-475.
Bozzolo, A. and Evans, M.R. (2013). Efficacy of cork granulates as a top coat substrate component for seed germination as compared to vermiculite. Horttechnol., 23: 114-118.
Braud, A., Jézéquel, K., Bazot, S. and Lebeau, T. (2009). Enhanced phytoextraction of an agricultural Cr-, Hg and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria Chemosphere, 74: 280–286.
Brockwell, J. (1985). Environmental interactions influencing innovative practices in legume inoculation, In: Shibles R (ed) Proceedings of the World Soybean Conference III, Westview Press, Boulder, Colo, pp. 943-950.
Bustamante, M.A., Paredes, C., Moral, R.; Agullo, E., Perez-Murcia, M.D. and Abad, M. (2008). Composts from distillery wastes as peat substitutes for transplant production. Resour. Conserv. Recycl. 52:792–799.
Cakmakci, R., Erat, M., Erdogan, U.G. and Donmez, M.F. (2007). The influence of PGPR on growth parameters, anti-oxidant and pentose phosphate oxidative cycle enzymes in wheat and spinach plants. J. Plant Nutr. Soil Sci., 170: 280-295.
Caesar, A.J. and Burr, T.J. (1991). Effect of conditioning, betaine, and sucrose on survival of rhizobacteria in powder formulations. Appl. Environ. Microbiol., 57: 168–172.
Cassidy, M.B., Lee, H. and Trevors, J.T. (1997). Survival and activity of lac-lux marked Pseudomonas aeruginosa UG2Lr cells in encapsulated kcarageenan over 4 years at 480C. J. Microbiol. Meth., 30: 167–170.
Chao, W.L. and Alexander, M. (1984). Mineral soils as carrier for Rhizobium inoculants. Appl. Environ. Microbiol., 47: 94-97.
Cocero, M.J., Martin, A., Mattea, F. and Varona, S. (2009). Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. J. Supercrit Fluid, 47(3): 546–555.
Crawford, S.L. and Berryhill, D.L. (1983). Survival of Rhizobium phaseoli in coal-based legume inoculants applied to seeds. Appl. Environ. Microbiol., 45:703–705.
Dardanelli, M.S., Ferna´ndez, F.J., Espuny, M.R., Rodr?´guez, M.A., Soria, M.E., Gil Serrano, A.M., Okon, Y. and Meg?´as, M. (2008). Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol. Biochem., 40: 2713–2721.
Dary, M., Chamber-Pérez, M.A., Palomares, A.J. and Pajuelo, E. (2010). In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J. Hazard. Mater., 177: 323–330.
Daza, A., Santamaria, C., Rodriguez-Navarro, D.N., Camacho, M., Orive, R. and Temprano, F. (2000). Perlite as a carrier for bacterial inoculants. Soil Biol. Biochem., 32: 567–572.
Deaker, R., Roughley, R. and Kennedy, I.R. (2004). Legume seed inoculation technology – a review. Soil Biol. Biochem., 36: 1275–1288.
Dell’Amico, Cavalca, L. and Andreoni,V. (2008). Improvement of Brassica napus growth under cadmium stress by cadmium resistant rhizobacteria. Soil Biol. Biochem., 40: 74–84.
Döbereiner, J. and Day, J.M. (1976). Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Newton,W.E., Nyman, C.J. (ed) Proceedings of the first International Symposium on Nitrogen Fixation. Vol. 2, Washington State University Press, Pullman, USA. pp 518-538.
Egamberdiyeva, D. (2007). The growth and nutrient uptake of maize inoculated with plant growth promoting bacteria affected by different soil types. Appl. Soil Ecol., 36: 184-189.
Einarsson, S., Gudmundsson, J., Sverrisson, H., Kristjansson, J.K. and Runolfsson, S. (1993). Production of Rhizobium inoculants for Lupinus nootkatensis on nutrient-supplemented pumice. Appl. Environ. Microbiol., 59: 3666–3668.
Fages, J. (1992). An industrial view of Azospirillum inoculants: formulation and application technology. Symbiosis, 13: 15-26.
Faisal, M. and Hasnain, S. (2005). Bacterial Cr (VI) reduction concurrently improves sunflower (Helianthus annuus L.) growth. Biotechnol. Lett., 27: 943–947.
Felici, C., Vettori, L., Giraldi, E., Forino, L.M.C., Toffanin, A., Tagliasacchi, A.M. and Macro Nuti M. (2008). Single and coinoculation of Bacillus substilis and Azospirillum brasilense on Lycoperscion esculentum: Effects on plant growth and rhizoaphere microbial community. Appl. Soil Ecol., 10: 260-270.
Ghevariya, K.K. and Desai, P.B. (2014) Rhizobacteria of sugarcane: In vitro screening for their plant Growth Promoting potentials. Res. J. Recent. Sci., 3: 52-58.
Gholami, A., Shahsavani, S. and Nezarat S. (2009). The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int. J. Biol. Life Sci., 1: 35–40.
Gil, M.V., Calvo, L.F., Blanco, D. and Sanchez, M.E. (2008). Assessing the agronomic and environmental effects of the application of cattle manure compost on soil by multivariate methods. Bioresour. Technol., 99:5763–5672.
Glick, B.R. and Bashan, Y. (1997). Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Adv., 15:353-378.
Glick, B.R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Hindawi Publishing Corporation, Scientifica.
Graham-Weiss, L.; Bennett, M.L. and Alan, S.P. (1987). Production of bacterial inoculants by direct fermentation on nutrient-supplemented Vermiculite. Appl. Environ. Microbiol., 53(9): 2138-2140.
Gunasekaran, S., Balachandar, D. and Mohanasundaram, K. (2004). Studies on synergism between Rhizobium, plant growth promoting rhizobacteria (PGPR) and phosphate solubilizing bacteria in blackgram. In: Kannaiyan, S.; Kumar, K.; Govimdarajan, K. (ed) Biofertilizer technology for rice based cropping system, Scientific Publ. Jodhpur, pp. 269-273.
Hartley, E.J., Gemmell, L.G., Slattery, J.F., Howieson, J.G. and Herridge, D.F. (2005). Age of peat-based lupin and chickpea inoculants in relating to quality and efficacy. Australian J. Exp. Agr., 45: 183–188.
Hay, I.D., Rehman, Z.U., Ghafoor, A. and Rehm, B.H.A. (2010). Bacterial biosynthesis of alginates. J. Chem. Technol. Biotechnol., 85: 752–759.
Hemphill, D.D.Jr. (1982). Anticrustant effects on soil mechanical resistance and seedling emergence. Hort. Sci., 17: 391-393.
Hernandez, A., Weekers, F., Mena, J., Borroto, C. and Thonart, P. (2006). Freeze-drying of the biocontrol agent Tsukamurlla paurometabola, C-924: predicted stability of formulated powders. Ind. Biotechnol., 2(3): 209–212.
Jahanian, A., Chaichi, M.R., Rezaei, K., Rezayazdi, K. and Khavazi K. (2012). The effect of plant growth promoting rhizobacteria (pgpr) on germination and primary growth of artichoke (Cynara scolymus). Int. J. Agric. Crop Sci., 4: 923–929.
Jain R, Saxena J, Sharma V. (2010). The evaluation of free and encapsulated Aspergillus awamori for phosphate solubilization in fermentation and soil–plant system. Applied Soil Ecol.; 46: 90–94.
Jayasinghearachchi, H.S. and Seneviratne, G. (2004). A bradyrhizobial-Penicillium spp. biofilm with nitrogenise activity improves N2 fixing symbiosis of soybean. Biol. Fert. Soils, 40(6): 432–434.
Joe, M.M., Saravanan, V.S., Islam, M.R and Sa T. (2014). Development of alginate-based aaggregate of Methylobacterium sp. and Azospirillum brasilense tested under in vitro conditions to promote plant growth. J. Appl. Microbiol., 116(2).
Jones, K.A. and Burges, H.D. (1998). Technology of formulation and application. In: Burges, H.D. (ed) Formulation of microbial pesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer Academic Publishers, Dordrecht, pp 7-29.
Joshi, N.V. (1920). Studies on the root nodule organism of the leguminous plant. India Dept. Agr. Mem., Bact. Ser., 1, 247-276.
Kaljeet, S., Keyeo, F. and Amir, H.G. (2011). Influence of carrier materials and storage temperature on survivability of rhizobial inoculant. Asian J. Plant Sci., 10: 331-337.
Kalra, A., Chandra, M., Awasthi, A., Singh, A.K. and Khanuja, S.P.S. (2010). Natural compounds enhancing growth and survival of rhizobial inoculants in vermicompost-based formulations. Biol. Fertil. Soils., 46: 521–524.
Keppeler, S., Ellis, A. and Jacquier, J.C. (2009). Cross-linked carrageenan beads for controlled release delivery systems. Carbohydr. Polym., 78: 973–977.
Keyser, H.H., Somasegaran, P. and Bohlool, B.B. (1993). Rhizobial ecology and technology. In: Metting, E.B., editor. Soil Microbial Ecology: Applications in Agricultural and Environmental Management. New York, NY, USA: Marcel Dekker;. pp. 205–226.
Khan, M.S., Zaidi, A., Wani, P.A. and Oves, M. (2009). Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ. Chem. Lett., 7: 1–19.
Klein, J., Stock, J. and Vorlop, K.D. (1983). Pore size and properties of spherical Ca-alginate biocatalysts. Appl. Microbiol. Biotechnol., 18(2): 86-91.
Kloepper, J.W. and Schroth, M.N. (1981). Development of powder formulation of rhizobacteria for inoculation of potato seed pieces. Phytopathol., 71: 590–592.
Kloepper, J.W., Zablotowick, R.M., Tipping, E.M. and Lifshitz, R. (1991). Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister, D.L.; Cregan, P.B. (Eds.), The Rhizosphere and Plant Growth. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 315–326.
Ko, H.J., Kim, K.Y., Kim, H.T., Kim, C.N. and Umeda, M. (2008). Evaluation of maturity parameters and heavy metal contents in composts made from animal manure. Waste Manage., 28: 813–820.
Kohler, J., Caravaca, F. and Roldan, A. (2010). An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol. Biochem., 42(3): 429-434.
Kostov, O. and Lynch, J.M. (1998). Composted sawdust as a carrier for Bradyrhizobium, Rhizobium and Azospirillum in crop inoculation. World J. Microbiol. Biotechnol., 14: 389–397.
Kremer, R.J. and Peterson, H.L. (1983). Field evaluation of selected rhizobium in an improved legume inoculant. Agron. J., 75: 139-143.
Kumar, A., Kumar, A., Devi, S., Patil, S., Payal, C. and Negi, S. (2012). Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities: an in vitro study. Recent Res. Sci. Technol., 4(1): 01-05.
Ladha, J.K. and Reddy, P.M. (1995). Extension of nitrogen fixation to rice- Necessity and possibilities. Geojournal, 35(3): 363-372.
Lima, J.deA., Sonza, A.F., Castor, O.S. and de Menezes-Sobrinho, J.A. (1984). Effects of organic matter and vermiculite on garlic yields. Pesqui. Agropecu. Bras., 19: 41-45.
Ma, Y., Rajkumar, M. and Freitas, H. (2009a). Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere, 75(6): 719-725.
Ma, Y., Rajkumar, M. and Freitas, H. (2009b). Improvement of plant growth and nickel uptake by nickel resistant -plant-growth promoting bacteria. J. Hazard. Mater., 166: 1154–1161.
Ma, Y., Rajkumar, M., Luo, Y. and Freitas, H. (2011). Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J. Hazard. Mater., 195: 230–237.
Maheshwari, D.K., Kumar, S., Kumar, B. and Pandey, P. (2010). Co-inoculation of urea and DAP tolerant Sinorhizobium meliloti and Pseudomonas aeruginosa as integrated approach for growth enhancement of Brassica juncea. Indian J Microbiol., 50(4): 425–431.
Malusa, E., Sas-Paszt, L. and Ciesielska, J. (2012). Technologies for beneficial microorganisms inocula used as biofertilizers. T. Sentific World J., Article ID 491206, pp 12.
Manikandan, R., Saravanakumar, D., Rajendran, L., Raguchander, T. and Samiyappan, R. (2010). Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biol. Control, 54: 83–89.
McInnes, A. and Date, R.A. (1999). Improving survival of rhizobia on Stylosanthes and Desmanthus seed at high temperature. Proceedings of the 12th Australian Nitrogen Fixation Conference, Country Comfort Hotel, Wagga Wagga, Australia, pp 3–4.
Meisinger, A.C. (1984). Vermiculite, In Bureau of Mines minerals yearbook, vol. 1. Superintendent of Documents, Government Printing Office, Washington, D.C. p 1-4.
Mia, M.A.B. and Shamsuddin, Z.H. (2010). Rhizobium as a crop enhancer and biofertilizer for increased cereal production. African J Biotechnol., 9(37): 6001-6009.
Mishra, P.K., Bisht, S.C., Ruwari, P., Joshi, G.K., Singh, G., Bisht, J.K. and Bhatt, J.C. (2011). Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). European J. Soil Biol., 47(1): 35-43.
Moral, R., Paredes, C., Bustamante, M.A., Egea, F.M. and Bernal, M.P. (2009). Utilization of manure composts by high value crops: Safety and environmental challenges. Biroresour. Technol., 100(22): 5454–5460.
Mugnier, J. and Jung, G. (1985). Survival of bacteria and fungi in relation to water activity and the solvent properties of water in biopolymer gels. Appl. Environ. Microbiol., 50: 108-114.
Muniruzzaman, S. and Khan, S.I. (1992). Suitability of some local agro-industrial wastes as carrier materials for Rhizobium. sp. infecting Sesbania bispinosa. World J. Microbiol. Biotechnol., 8: 329–330.
Muresu, R., Sulas, L. and Caredda, S. (2003). Legume Rhizobium symbiosis: characteristics and prospects of inoculation. Rivoluzione Agronomica, 37: 33–45.
Muthukumarasamy, R., Revathi, G. and Lakshminarasimhan, C. (1999). Diazotrophic associations in sugarcane cultivation in South India. Trop. Agric., 76: 171-178.
Neyra, C.A., Atkinson, A. and Olubayi, O. (1995). Coaggregation of Azospirillum with other, bacteria: basis for functional diversity. In: Fendrik, I.; Gallo, M.D.; Vanderleyden, J.; de Zamaroczy, M. (ed) Azospirillum VI and related microorganisms, genetics-physiology-ecology, Vol. G37:429-439, NATO ASI Series, Series G: Ecological Sciences, Springer Verlag, Berlin, Heidelberg, Germany.
Nobbe, F. and Hiltner, L. (1896). U.S. Patent 570 813. Inoculation of the soil for cultivating leguminous plants.
Orlando, P., Binaglia, L., De Feo, A., Trevisi, R., Melodia, C. and Trenta, R. (1994). Preparation of high molecular weight radioiodinated alginic acid. J. Labelled Compd. Radiopharm, 34: 653–657, doi: 10.1002/jlcr. 2580340709.
Pandey, R. and Khuller, G.K. (2005). Alginate as a drug delivery carrier- handbook of carbohydrate engineering. Taylor & Francis Group, LLC, pp 799-815.
Park, J.K. and Chang, H.N. (2000). Microencapsulation of microbial cells. Biotechnol. Adv., 18: 303–319.
Partha, N. and Sivasubramanian, V. (2006). Recovery of chemicals from pressmud –a sugar industry waste. Indian Chemical Engr., 48(3): 161-163.
Plenchette, C. and Strullu, D.G. (2003). Long-term viability and infectivity of intraradical forms of Glomus intraradices vesicles encapsulated in alginate beads. Mycological Res., 107(5): 614–616.
Pooet, D.T., Dhulster, P., Barbotin, J.N. and Thomas, D. (1986). Plasmid inheritability and biomass production: comparison between free and immobilized cell cultures of Eschrichia coli BZ18 (pTG201) without selection pressure. J. Bacteriol., 165: 871-877.
Qureshi, N., Annous, B.A., Ezeji, T.C., Karcher, P. and Maddox, I.S. (2005). Biofilm reactors for industrial bioconversion process: employing potential of enhanced reaction rates. Microb Cell Factories, 4, article 24.
Rajendran, G., Sing, F., Desai, A.J. and Archana G. (2008). Enhanced growth and nodulation of Pigeon Pea by co-inoculation of Bacillus strains with Rhizobium spp. Biosource Technol. 99(11): 4544-4550.
Rajkumar, M., Nagendran, R., Kui, J.L., Wang, H.L. and Sung Z.K. (2006). Influence of plant growth promoting bacteria and Cr (VI) on the growth of Indian mustard. Chemosphere, 62: 741–748.
Rani, A., Souche Y.S. and Goel R. (2009). Comparative assessment of in situ bioremediation potential of cadmium resistant acidophilic Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains on soybean. Int. Biodeterior. Biodegrad., 63: 62-66.
Rassis, D., Nussinovitch, A. and Saguy, I.S. (2002). Collapse, shrinkage and structural changes in dried alginate gels containing fillers. Food Hydrocolloid, 16(2): 139–151.
Rebah, F.B., Tyagi, R.D. and Prevost, D. (2001). Acid and alkaline treatments for enhancing the growth of rhizobia in sludge. Canadian J. Microbiol., 47: 467–474.
Rebah, F.B., Tyagi, R.D., Prevost, D. and Surampalli, R.Y. (2002a). Wastewater sludge as a new medium for rhizobial growth. Water Qual. Res. J. Canada, 37: 353–370.
Rebah, F.B., Tyagi, R.D. and Prevost, D. (2002b). Nodulation and yield of alfalfa grown in sludge amended soils and inoculated with rhizobia produced in sludge. J. Environ. Qual., 31: 1339–1348.
Rebah, F.B.; Prevost, D.; Yezza, A. and Tyagi, R.D. (2007). Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: A review. Bioresource Technol., 98(18): 3535-3546.
Reid, W.S., Liptay, A., Nicholls, C.F. and Marriage, P.B. (1983). A plug-mix planter attachment for dispensing a charcoal vermiculite mixture to protect emerging seedlings from herbicide toxicity. Canadian J. Plant Sci., 63: 567-571.
Rekha, P.D., Lai, W., Arun, A.B. and Young C. (2007). Effect of free and encapsulated Pseudomonas putida CC-R2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Biores. Technol., 98: 447–451.
Rouissi, T., John, R.P., Brar, S.K., Tyagi, R.D. and Prevost, D. (2010). Original research: centrifugal recovery of rhizobial cells from fermented starch industry wastewater & development of stable formulation. Ind Biotechnol., 6 (1): 41–49.
Saharan, K., Sarma, M.V.R.K., Srivastava, R., Sharma, K., Johri, B.N., Prakash, A., Sahai, V. and Bisaria, V.S. (2010). Development of non-sterile inorganic carrier-based formulations of fluorescent pseudomonad R62 and R81 and evaluation of their efficacy on agricultural crops. Appl. Soil Ecol., 46: 251–258.
Saharan, B.S. and Nehra, V. (2011). Plant Growth Promoting Rhizobacteria: A Critical Review. Life Sci. Med. Res., 21. http://astonjournals.com/lsmr.
Sahin, F., Cakmakci, R. and Kantar, F. (2004). Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil, 265: 123-129.
Sangeetha, D. and Stella D. (2012). Survival of plant growth promoting bacterial inoculants in different carrier materials. Int. J. Pharm. Biol. Arch., 3(1): 170-178.
Saravanakumar, D., Harish, S., Loganathan, M., Vivekananthan, R., Rajendran, L. and Samiyappan, R. (2007a). Rhizobacterial bioformulation for the effective management of Macrophomina root rot in mungbean. Arch. Phytopathol. Plant Protect., 40(5): 323–337.
Saravanakumar, D., Vijayakumar, C., Kumar, N. and Samiyappan, R. (2007b). PGPR induced defense responses in tea plants against blister blight disease. Crop Protect., 26: 556–565.
Seneviratne, G., Zavahir, J.S., Bandara, W.M.M.S. and Weerasekara, M.L.M.A.W. (2008). Fungal-bacterial biofilms: their development for novel biotechnological applications. World J. Microbiol. Biotechnol., 24(6): 739–743.
Sheng, X.F. and Xia J.J. (2006). Improvement of rape (Brassica napus) plant growth and cadmium uptake by Cadmium resistant bacteria. Chemophore, 64: 1036-1042.
Shukla, R. and Shukla, A. (2012). Market potential for biopesticides: a green product for agricultural application. Int. J. Manag. Res. Rev., 2(1): 91-99.
Siddiqui, Z.A. and Kataoka, R. (2011). Mycorrhizal Inoculants: Progress in Inoculant Production Technology. In: Ahmad, et al. (ed) Microbes and Microbial Technology., Agricultural and Environmental applications 506, DOI: 10.1007/978-1-4419-7931-5-18.
Smith, R.S. (1992). Legume inoculant formulation and application. Canadian J. Microbiol., 38: 485-492.
Smit, E., Wolters, A.C., Lee, H., Trevors, J.T. and van Elsas, J.D. (1996). Interaction between a genetically marked Pseudomonas fluorescens strain and bacteriophage øR2f in soil: Effects of nutrients, alginate encapsulation, and the wheat rhizosphere. Microb. Ecol., 31: 125–140.
Sparrow, S.D. and Ham, G.E. (1983a). Nodulation, N2 fixation, and seed yield of navy beans as influenced by inoculant rate and inoculant carrier. Agron. J., 75: 20-24.
Sparrow, S.D. and Ham, G.E. (1983b). Survival of Rhizobium phaseoli in six carrier materials. Agron. J., 75: 181-184.
Stajkovic, O., Delic, D., Josic, D., Kuzmanovic, D., Rasulic, N. and Knezevic-Vukcevic, J. (2011). Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Romanian Biotechnol. Lett., 16(1): 5919-5926.
Stephens, J.H.G. and Rask, H.M. (2000). Inoculant production and formulation. Field Crops. Res., 65: 249–258.
Strijdom, B.W. and van Rensburg, H.J. (1981). Effect of steam sterilization and gamma irradiation of peat on quality of Rhizobium inoculants. Appl. Environ. Microbiol., 41: 1344-1347.
Strullu, D-G. and Plenchette, C. (1991). The entrapment of Glomus sp. in alginate beads and their use as root inoculum. Mycological Res., 95: 1194–1196.
Tal, Y., van Rijn, J. and Nussinovitch, A. (1997). Improvement of structural and mechanical properties of denitrifying alginate beads by freeze-drying. Biotechnol. Progr., 13 (6): 788–793.
Tal, Y., van Rijn, J. and Nussinovitch, A. (1999). Improvement of mechanical and biological properties of freeze-dried denitrifying alginate beads by using starch as a filler and carbon source. Appl. Microbiol. Biotechnol., 51(6): 773–779.
Tang, W.H. and Yang, H. (1997). Research and application of biocontrol of plant diseases and PGPR in China. In: Ogoshi, A.; Kobayashi, K.; Homma, Y.; Kodama, F.; Kondo, N.; Akino, S. (ed) Plant Growth-Promoting Rhizobacteria -present status and future prospects, Faculty of Agriculture, Hokkaido University, Sapporo, Japan. pp 4-9.
Tchebotar, V.K., Kang, U.G., Asis, C.A. Jr. and Akao, S. (1998). The use of GUS-reporter gene to study the effect of Azospirillum-Rhizobium coinoculation on nodulation of white clover. Biol. Fertil. Soils, 27: 349-352.
Thakuria, D., Talukdar, N.C., Goswami, C., Hazarika, S., Boro, R.C. and Khan M.R. (2004). Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr. Sci., 86: 978–985.
Tittabutr, P., Payakapong, W., Teaumroong, N., Singleton, P.W. and Boonkerd, N. (2007). Growth, survival and field performance of Bradyrhizobial liquid inoculant formulations with Polymeric additives. Sci. Asia, 33: 69-77.
Trevors, J.T., van Elsas, J.D., Lee, H. and van Overbeek, L.S. (1992). Use of alginate and other carriers for encapsulation of microbial cells for use in soil. Microb. Releases, 1: 61–69.
Trevors, J.T., van Elsas, J.D., Lee, H. and Wolters, A.C. (1993). Survival of alginate encapsulated Pseudomonas fluorescens cells in soil. Appl. Microbiol. Biotechnol., 39: 637–643.
Vandergheynst, J.S., Scher, H. and Hong-Yun, G. (2006). Design of formulations for improved biological control agent viability and sequestration during storage. Ind Biotechnol., 2(3): 213–219.
Vandergheynst, J.S., Scher, H.B., Guo, H.Y. and Schultz, D.L. (2007). Water-in-oil emulsions that improve the storage and delivery of the biolarvacide Lagenidium giganteum. BioControl, 52(2): 207–229.
Van Elsas, J.D. and Heijnen, C.E. (1990). Methods for the introduction of bacteria in soil: a review. Biol. Fertil. Soils, 10: 127–133.
van Veen, J.A., van Overbeek, L.S. and van Elsas, J.D. (1997). Fate and activity of microorganisms introduced into soil. Microbiol. Mol. Biol. Rev., 61(2): 121–135.
Vassileva, M., Serrano, M., Bravo, V., Jurado, E., Nikolaeva, I., Martos, V. and Vassilev, N. (2010). Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl. Microbiol. Biotechnol., 85 (5):1287–1299.
Vassilev, N., Nikolaeva, I. and Vassileva, M. (2005). Polymer-based preparation of soil inoculants: applications to arbuscular mycorrhizal fungi. Rev. Environ. Sci. Biotechnol., 4(4): 235–243.
Vessey, J.K. (2003). Plant growth promoting bacteria as Biofertilisers. Plant Soil., 255: 571-586.
Vidhyasekaran, P. and Muthamilan, M. (1995). Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Dis., 79:782–786.
Weir, S.C., Dupuis, S.P., Providenti, M.A., Lee, H. and Trevors, J.T. (1995). Nutrient enhanced survival of and phenanthrene mineralization by alginate encapsulated and free Pseudomonas sp. UG14Lr cells in creosotecontaminated soil slurries. Appl. Microbiol. Biotechnol., 43: 946–951.
Weiss, L.G., Bennett, M.L. and Paau, A.S. (1987). Production of bacterial inoculants by direct fermentation on nutrient-supplemented vermiculite. Appl. Environ. Microbiol., 53: 2138–2140.
Xavier, I.J., Holloway, G. and Leggett, M. (2004). Development of rhizobial inoculant formulations. Online. Crop Manage., doi:10.1094/CM-2004-0301-06-RV.
Yabur, R., Bashan, Y. and Hernández-Carmona, G. (2007). Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion. J. Appl. Phycol., 19(1): 43–53.
Young, C.C., Rekha, P.D., Lai, W.A. and Arun, A.B. (2006). Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnol. Bioengg., 95(1):77-83.
Zahir, Z.A., Arshad, M. and Frankenberger, W.T. (2004). Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Adv. Agron., 81: 97-168.
Zaidi, A., Khan, M.S., Ahemad M. and Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol. Immunol. Hungarica, 56: 263-284.
Zhao, H., Li, M., Fang, K., Chen, W. and Wang, J. (2012). In: Silico Insights into the Symbiotic Nitrogen Fixation in Sinorhizobium melilotivia Metabolic Reconstruction. PLoS ONE, 7(2): e31287.
Zohar-Perez, C., Ritte, E., Chernin, L., Chet, I. and Nussinovitch, A. (2002). Preservation of chitinolytic Pantoae agglomerans in a viable form by cellular dried alginate-based carriers. Biotechnol. Prog., 18: 1133-1140.
Zohar-Perez, C., Chernin, L., Chet, I. and Nussinovitch, A. (2003). Structure of dried cellular alginate matrix containing fillers provides extra protection for microorganisms against UVC radiation. Radiat Res., 160(2): 198–204.
Zohar-Perez, C., Chet, I. and Nussinovitch, A. (2005). Mutual relationships between soils and biological carrier systems. Biotechnol. Bioeng., 92(1): 54–60.
Citation Format
How to Cite
Nehra, V., & Choudhary, M. (2015). A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. Journal of Applied and Natural Science, 7(1), 540–556. https://doi.org/10.31018/jans.v7i1.642
More Citation Formats:
Research Articles

Most read articles by the same author(s)