Article Main

Mohammad Hussein Mikael Muhammed S.A.F. Muhammed

Abstract

Metabolite methodology in parasites assists in gaining a better comprehension of their roles in infection, adaptation, pathogenesis, taxonomy, diagnosis, and host-parasite interactions. The present study aimed to isolate and detect fatty acids and proteins in tissue extract of the whole flatworm Polystoma integerrimum that settle in the urinary bladder of the frog Bufo viridis, using Reversed-phase high-performance liquid chromatography (RP-HPLC) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) techniques, respectively.The results showed that the number of fatty acids in flatworm extract was ten. Six of them were three unsaturated fatty acids, which included oleic (C18:1n-9), linoleic (C18:2n-6), and linolenic (C18:3n-3) acids, and three other saturated fatty acids, which included myristic (C14:0), palmitic (C16:0) and stearic acids (C18:0). The palmitic (49.022%) and stearic (35.499%) fatty acids were the highest among the ten total fatty acids. In addition, the SDS-PAGE technique showed that the number of protein bands in the flatworm extract was six, where the second (76859 D), fourth (23356 D), and fifth (13966 D) bands of the extract matched the first (bovine serum albumin), fourth (pepsin), and fifth (alpha-lactalbumin) bands of the standard proteins, respectively. The other three bands, the first, third, and sixth, were not matched by any of the standard protein bands. The present study could be a starting point for studying more metabolites and increasing the present-day knowledge of their types, mechanism of action, and their role in the biological and taxonomical fields to fill the gap in data about this flatworm.


 

Article Details

Article Details

Keywords

Flatworm, Metabolites, RP-HPLC, Separation techniques, SDS-PAGE

References
Al-Daoody A.A. (2006). Comparative biological and biochemical study for a number of cercariae. Ph.D. [dissertation], University of Mosul, Mosul. (In Arabic)
Al-Marsomy, W. A., & Al-Hamadaani, H. S. (2016). Association of cestoda Raillietina echinobothrida in rock pigeon Columba livia from Baghdad city of Iraq. Baghdad Science Journal, 13(3), 463-0468. doi,org/10.21123/bsj.2016.13.3.0463
Al-Mowla S.A. (2010). Biochemical parameters in some nematodes, which infect some vertebrates. Ph.D. [dissertation], University of Mosul, Mosul. (In Arabic)
Al-Naftachi M.T. (2006). Histological and biochemical studies of some cestode tapeworms from different vertebrate hosts [Ph.D. dissertation], University of Mosul, Mosul. (In Arabic)
Al-Niaeemi, B. H., Al-Kallak, S. N., & Mikael, M. H. (2019). Determination of total concentration of proteins and carbohydrates in tapeworm Postgangesia armata and intestines of infected and non-infected fish host Silurus glanis. World Journal of Pharmaceutical Sciences, 8(3), 1-11. doi.org/10.20959/wjpps20193-13024
Al-Niaeemi, B. H., Mikael, M. H., & Al-Kallak, S. N. (2020). Biochemical study of acetylcholinesterase and deoxyribonucleic acid (DNA) in tape worm, Postgangesia armata in European catfish, Silurus glanis. Biochemical & Cellular Archives, 20, 3591-3596. doi,org/10.13140/RG.2.2.36044.64649
Al-Tikrity, I. A., Al-Janabi, Z. A., & Al-jubory, A. H. (2014). Comparative study of hydatid cysts isolated from livers of different hosts. Baghdad Science Journal, 11(2), 928-933. URL: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/2712/2643
Auliya, M., Altherr, S., Nithart, C., Hughes, A., & Bickford, D. (2023). Numerous uncertainties in the multifaceted global trade in frogs’ legs with the EU as the major consumer. Nature Conservation, 51, 71-135. doi.org/10.3897/natureconservation.51.93868
Babaran, D., Koprivnikar, J., Parzanini, C., & Arts, M. T. (2021). Parasites and their freshwater snail hosts maintain their nutritional value for essential fatty acids despite altered algal diets. Oecologia, 196(2), 553-564. doi.org/10.1007/s00442-021-04944-5
Becerro-Recio, D., González-Miguel, J., Ucero, A., Sotillo, J., Martínez-Moreno, Á., Pérez-Arévalo, J., Cwiklinski K., Dalton J.P. & Siles-Lucas, M. (2021). Recognition pattern of the Fasciola hepatica excretome/secretome during the course of an experimental infection in sheep by 2D Immunoproteomics. Pathogens, 10(6), 725. doi.org/10.3390/pathogens10060725
Becker, A. C., Willenberg, I., Springer, A., Schebb, N. H., Steinberg, P., & Strube, C. (2017). Fatty acid composition of free-living and parasitic stages of the bovine lungworm Dictyocaulus viviparus. Molecular and Biochemical Parasitology, 216, 39-44. doi.org/10.1016/j.molbiopara.2017.06.008
12. Bennett, A. P., & Robinson, M. W. (2021). Trematode proteomics: recent advances and future directions. Pathogens, 10(3), 348. doi.org/10.3390/pathogens10030348
Besteiro, S., Bertrand-Michel, J., Lebrun, M., Vial, H., & Dubremetz, J. F. (2008). Lipidomic analysis of Toxoplasma gondii tachyzoites rhoptries: further insights into the role of cholesterol. Biochemical Journal, 415(1), 87-96. doi.org/10.1042/bj20080795
Biron, D. G., Joly, C., Marché, L., Galéotti, N., Calcagno, V., Schmidt-Rhaesa, A., Renault L. & Thomas, F. (2005). First analysis of the proteome in two nematomorph species, Paragordius tricuspidatus (Chordodidae) and Spinochordodes tellinii (Spinochordodidae). Infection, Genetics and Evolution, 5(2), 167-175. doi.org/10.1016/j.meegid.2004.09.003
Chaabane, A., Verneau, O., & Du Preez, L. (2019). Indopolystoma n. gen.(Monogenea, Polystomatidae) with the description of three new species and reassignment of eight known Polystoma species from Asian frogs (Anura, Rhacophoridae). Parasite, 26, 67-84. doi.org/0.1051/parasite/2019067
Colomb, F., & McSorley, H. J. (2025). Protein families secreted by nematodes to modulate host immunity. Current Opinion in Microbiology, 84, p 102582-9. https://doi.org/10.1016/j.mib.2025.102582
Elliott, J. M., De Haan, B., & Parkin, K. L. (1989). An improved liquid chromatographic method for the quantitative determination of free fatty acids in milk products. Journal of Dairy Science, 72(10), 2478-2482. doi.org/10.3168/jds.S0022-0302 (89)79388-7
Fokina, N., Ruokolainen, T., & Bakhmet, I. (2018). Lipid profiles in Himasthla elongata and their intermediate hosts, Littorina littorea and Mytilus edulis. Molecular and Biochemical Parasitology, 225, 4-6. doi.org/10.1016/j.molbiopara.2018.08.006
Gazzinelli-Guimaraes, P. H., & Nutman, T. B. (2018). Helminth parasites and immune regulation. F1000Research, 7, 1685. doi.org/10.12688/f1000research.15596.1
Grano, M. A. (2020). The Asian market of frogs as food for humans during COVID-19. Risk and consequences for public health. Medicine Papers, 6(4), 77-87. URL: https://www.researchgate.net/publication/348296156
Guevara-Zambrano, J. M., Michels, D., Verkempinck, S. H. E., Infantes-Garcia, M. R., Hendrickx, M. E., Van Loey, A. M., & Grauwet, T. (2023). HPLC-CAD method to quantify lipolysis products from plant-based oils rich in unsaturated fatty acids. Journal of Food Composition and Analysis, 121, 105400. doi.org/10.1016/j.jfca.2023.105400
Gyamfi, D., Awuah, E. O., & Owusu, S. (2019). Lipid metabolism: an overview In: The molecular nutrition of fats (pp 17-32). Academic Press, London. doi.org/10.1016/B978-0-12-811297-7.00002-0
Hade, B. F., Al-Biatee, S. T., & Al-Rubaie, H. M. (2022). Traditional and molecular diagnosis of Haemonchus contortus in sheep in Babylon province, Iraq. Iraqi Journal of Veterinary Sciences, 36(2), 479-481. doi.org/10.33899/ijvs.2021.130533.1842
Hajji, T., Telahigue, K., Rabeh, I., & El Cafsi, M. (2022). Lipid classes and fatty acid composition in two parasitic copepods Peroderma cylindricum and Lernaeocera lusci and their respective fish hosts Sardina pilchardus and Merluccius merluccius from the Tunisian waters. Grasas y Aceites, 73(3), e469-e481. doi.org/10.3989/gya.0100211
Hoskin, G. P., & Bier, J. W. (1983). Fatty acids from larval Sulcascaris sp.(Nematoda) as possible indicators of infection of calico scallops (Argopecten gibbus). Journal of Food Safety, 5(2), 73-78. doi.org/10.1111/j.1745-4565.1983.tb00457.x
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.  Nature, 227(5259), 680-685. doi.org/10.1038/227680a0
Leeming, S. J., Hahn, C., Koblmüller, S., McAllister, C. T., Vanhove, M. P., & Kmentová, N. (2023). Amended diagnosis, mitochondrial genome, and phylogenetic position of Sphyranura euryceae (Neodermata, Monogenea, Polystomatidae), a parasite of the Oklahoma salamander. Parasite, 30, 27-45. doi.org/10.1051/parasite/2023025
Lignon, J. S., Cohen, S. C., Justo, M. C. N., Du Preez, L., Comarella, C. G., Nishimaru, R. A., Souza P.V., Ataíde M.W., Müller D.C., Brun M.V. & Monteiro, S. G. (2023). New species of Polystomoides (Monogenoidea: Polystomatidae) parasitizing the urinary bladder of a freshwater turtle in Brazil. Revista Brasileira de Parasitologia Veterinária, 32(3), e007823. doi.org/10.1590/S1984-29612023045
Lin, C. J., & Siddique, S. (2024). Parasitic nematodes: dietary habits and their implications. Trends in Parasitology, 40(3), 230-240. https://doi.org/10.1016/j.pt.2023.12.013
Liu, L. X., Serhan, C. N., & Weller, P. F. (1990). Intravascular filarial parasites elaborate cyclooxygenase-derived eicosanoids. The Journal of Experimental Medicine, 172(3), 993-996. . doi.org/10.1084/jem.172.3.993
Liu, Z., van den Berg, C., Weusthuis, R. A., Dragone, G., & Mussatto, S. I. (2021). Strategies for an improved extraction and separation of lipids and carotenoids from oleaginous yeast. Separation and Purification Technology, 257, 117946. doi.org/10.1016/j.seppur.2020.117946
Mangmee, S., Adisakwattana, P., Tipthara, P., Simanon, N., Sonthayanon, P., & Reamtong, O. (2020). Lipid profile of Trichinella papuae muscle-stage larvae. Scientific Reports, 10(1), 10125. doi.org/10.1038/s41598-020-67297-8
Martínez-González, J. D. J., Guevara-Flores, A., & del Arenal Mena, I. P. (2022). Evolutionary adaptations of parasitic flatworms to different oxygen tensions. Antioxidants, 11(6), 1102-1127. doi.org/10.3390/antiox11061102
Martínez-Ramírez, F., Riecan, M., Cajka, T., & Kuda, O. (2023). Analysis of fatty acid esters of hydroxy fatty acids in edible mushrooms. LWT - Food Science and Technology, 173, 114311. doi.org/10.1016/j.lwt.2022.114311
Mathison, B. A., Bradbury, R. S., & Pritt, B. S. (2023). Medical Parasitology Taxonomy Update, June 2020–June 2022. Journal of Clinical Microbiology, 61(5), e00286-22. doi,org/10.1128/jcm.00286-22
McVeigh, P. (2020). Post-genomic progress in helminth parasitology. Parasitology, 147(8), 835-840. doi.org/10.1017/S0031182020000591
Midzi, H., Vengesai, A., Muleya, V., Kasambala, M., Mduluza-Jokonya, T. L., Chipako, I., Siamayuwa C.E., Mutapi F., Naicker T. & Mduluza, T. (2023). Metabolomics for biomarker discovery in schistosomiasis: A systematic scoping review. Frontiers in Tropical Diseases, 4, 1108317. doi.org/10.3389/fitd.2023.1108317
Mondal, J., & Dey, C. (2015). Lipid and fatty acid compositions of a trematode, Isoparorchis hypselobagri Billet, 1898 (Digenea: Isoparorchiidae) infecting swim bladder of Wallago attu in the district North 24-Parganas of West Bengal. Journal of Parasitic Diseases, 39, 67-72. doi.org/10.1007/s12639-013-0283-8
Montaño, K. J., Loukas, A., & Sotillo, J. (2021). Proteomic approaches to drive advances in helminth extracellular vesicle research. Molecular Immunology, 131, 1-5. doi.org/10.1016/j.molimm.2020.12.030
Moreira, C. R., Henriques, M. B., & Ferreira, C. M. (2013). Frog farms as proposed in agribusiness aquaculture: Economic viability based in feed conversion. Boletim do Instituto de Pesca, 39(4), 390-399. URL: http://www.pesca.sp.gov.br/sumario39
Morimoto, K. C., Van Eenennaam, A. L., DePeters, E. J., & Medrano, J. F. (2005). Hot topic: Endogenous production of n-3 and n-6 fatty acids in mammalian cells. Journal of Dairy Science, 88(3), 1142-1146. doi.org/10.3168/jds.S0022-0302 (05)72780-6
Palma, J., Maciejewska-Markiewicz, D., Zgutka, K., d Piotrowska, K., Skonieczna-Żydecka, K., & Stachowska, E. (2023). The analysis of fatty acids and their derivatives in the liver of C57BL/6 mice with long-term caloric restrictions. Prostaglandins & Other Lipid Mediators, 169, 106764. . doi.org/10.1016/j.prostaglandins.2023.106764
Perera, D. J., & Ndao, M. (2021). Promising technologies in the field of helminth vaccines. Frontiers in Immunology, 12, 711650. doi.org/10.3389/fimmu.2021.711650
Pratt, C. W., & Cornely, K. (2024). Essential Biochemistry: International Adaptation (pp241-247) John Wiley & Sons, Hoboken. URL: https://books.google.iq/books?hl=en&lr=&id=gmD5EAAAQBAJ&oi
Ramakrishnan, S., Serricchio, M., Striepen, B., & Buetikofer, P. (2013). Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans. Progress in Lipid Research, 52(4), 488-512. doi.org/10.1016/j.plipres.2013.06.003
Rehman, A., & Abidi, S. M. A. (2023). Health and helminths: revisiting the paradigm of host-parasite relationship In: Biodiversity (pp. 381-397). CRC Press, Boca Raton. doi.org/10.1201/9781003220398
Ríos-Valencia, D. G., Ambrosio, J., Tirado-Mendoza, R., Carrero, J. C., & Laclette, J. P. (2023). What about the cytoskeletal and related proteins of tapeworms in the host’s immune response? An Integrative Overview. Pathogens, 12(6), 840. doi.org/10.3390/pathogens12060840
Robinson, M. W., & Cwiklinski, K. (2021). Proteomics of host-helminth interactions. Pathogens, 10(10), 1317. doi.org/10.3390/pathogens10101317
Sales, A. N., Du Preez, L., Verneau, O., & Domingues, M. V. (2023). Morphology and molecular characterization of Polystoma goeldii n. sp.(Monogenea, Polystomatidae) parasite from the urinary bladder of Physalaemus ephippifer (Steindachner)(Anura, Leptodactylidae). Parasitology International, 92, 102685. doi,org/10.1016/j.parint.2022.10 2685
Satyanarayana U & Chakrapani U. (2021). Biochemistry (pp 29-44).New Delhi: Elsevier. URL: https://books.google.iq/books?hl=en&lr=&id=VOpDEAAAQBAJ&oi=fnd&pg=
Stoffel, W., Chu, F., & Ahrens, E. H. (1959). Analysis of long-chain fatty acids by gas-liquid chromatography. Analytical Chemistry, 31(2), 307-308. doi.org/10.1021/ac60146a047
Sunshine, H., & Iruela-Arispe, M. L. (2017). Membrane lipids and cell signaling. Current Opinion in Lipidology, 28(5), 408-413. doi.org/10.3389/fitd.2023.1108
Tak, I. U. R., Chishti, M. Z., & Ahmad, F. (2015). Protein profiling of Haemonchus contortus found in sheep of Kashmir valley. Journal of Parasitic Diseases, 39, 639-644. doi.org/10.1007/s12639-014-0433-7
Wang, T., Leeming, M. G., Williamson, N. A., Bouchery, T., Doolan, R., Le Gros, G., ... & Gasser, R. B. (2025). The developmental lipidome of Nippostrongylus brasiliensis. Parasites & Vectors, 18(1), 27-36. https://doi.org/10.1186/s13071-024-06654-2
Wang, T., Nie, S., Ma, G., Vlaminck, J., Geldhof, P., Williamson, N. A., Reid, G. E., Gasser, R. B. (2020). Quantitative lipidomic analysis of Ascaris suum. PLoS Neglected Tropical Diseases, 14(12), e0008848. doi.org/10.1371/journal.pntd.0008848
Wang, Z., Martin, J., Abubucker, S., Yin, Y., Gasser, R. B., & Mitreva, M. (2009). Systematic analysis of insertions and deletions specific to nematode proteins and their proposed functional and evolutionary relevance. BMC Evolutionary Biology, 9(1), 1-14. doi.org/10.1186/1471-2148-9-23
Wangchuk, P., Constantinoiu, C., Eichenberger, R. M., Field, M., & Loukas, A. (2019). Characterization of tapeworm metabolites and their reported biological activities. Molecules, 24(8), 1480. doi.org/10.3390%2Fmolecule s24081480
Wangchuk, P., Yeshi, K., & Loukas, A. (2023). Metabolomics and lipidomics studies of parasitic helminths: molecular diversity and identification levels achieved by using different characterisation tools. Metabolomics, 19(7), 63 -85. doi.org/10.1007/s11306-023-02019-5
Zawistowska-Deniziak, A., Powązka, K., Pękacz, M., Basałaj, K., Klockiewicz, M., Wiśniewski, M., & Młocicki, D. (2021). Immunoproteomic analysis of Dirofilaria repens microfilariae and adult parasite stages. Pathogens, 10(2), 174. doi.org/10.3390/pathogens10020174
Zhang, P., Zhang, Y., Cao, L., Li, J., Wu, C., Tian, M., Zhang Z., Zhang C., Zhang W.,& Li, Y. (2023). A diverse virome is identified in parasitic flatworms of domestic animals in Xinjiang, China. Microbiology Spectrum, 11(3), e00702-23. doi,org/10.1128/spectrum.00702-23
Section
Research Articles

How to Cite

Detection and separation of fatty acids and proteins in monogenean flatworm Polystoma integerrimum  . (2025). Journal of Applied and Natural Science, 17(2), 638-647. https://doi.org/10.31018/jans.v17i2.6415