Article Main

Siska Efendi Dadang I Wayan Winasa Ali Nurmansyah

Abstract

Chilli plants respond to injury caused by herbivorous insects by emitting various volatile compounds. Insects that infest have different mouths; the difference in mouth type is thought to influence the volatiles released by plants. This research aimed to identify volatile compounds released by chilli plants (Capsicum annuum L. var Dumay) due to infestation by chewing and piercing-sucking insects. Capture of volatile compounds using the Headspace Solid-Phase Micro Extraction (SPME) method. The results showed differences in the composition of volatile compounds released by chilli plants infested by herbivores with different mouth types. Chilli plants not infested by herbivores release as many as 34 compounds. There were 24 volatile compounds released by chilli plants infested by Aphis gossypii and 27 compounds infested by Spodoptera litura. Infestation by herbivores with different mouth types triggers the synthesis of new compounds. Undecane was the only specific compound produced by chilli plants infested by A. gossypii and S. litura. In addition, herbivore infests trigger an increase in the proportion of some volatile compounds. The compound with the highest proportion in chilli plants infested by A. gossypii was eucalyptol (12.92%), while that infested by S. litura was o-xylene (11.77%). Naturally, the volatile substance with the highest proportion was cis-3-hexenyl acetate (21.22%). These findings can be the basis for developing more effective and sustainable pest control strategies and support further understanding plant defence mechanisms against herbivore infestation.


 

Article Details

Article Details

Keywords

Aphis gossypii, eucalyptol, Solid Phase Microextraction, Spodoptera litura

References
Ali, M. Y., Naseem, T., Zhang, J., Pan, M., Zhang, F., & Liu, T.-X. (2022). Plant volatiles and herbivore induced plant volatiles from chilli pepper act as attractant of the aphid parasitoid. Plants, 11, 1350. doi.org/10.3390/plants11101350
Arimura, G. I., Matsui, K., & Takabayashi, J. (2009). Chemical and molecular ecology of herbivore-induced plant volatiles: Proximate factors and their ultimate functions. Plant and Cell Physiology, 50(5), 911–923. doi.org/10.1093/pcp/pcp030
Azam, A., Kunimi, Y., Inoue, M. N., & Nakai, M. (2016). Effect of granulovirus infection of Spodoptera litura (Lepidoptera: Noctuidae) larvae on development of the endoparasitoid Chelonus inanitus (Hymenoptera: Braconidae). Applied Entomology and Zoology, 51(3), 479–488. doi.org/10.1007/s13355-016-0423-6
Burruezo, A. R., Kollmannsberger, H., Mas, M. C. G., Nits, S., & Nuez, F. (2010). HS-SPME HS-SPME comparative analysis of genotypic diversity in the volatile fraction and aroma-contributing compounds of capsicum fruits from the annuum - chinense - frutescens Complex. Journal of Agricultural and Food Chemistry, 58, 4388–4400. doi.org/10.1021/jf903931t
da Costa, J. G., Pires, E. V., Riffel, A., Birkett, M. A., Bleicher, E., & Sant’Ana, A. E. G. (2011). Differential preference of Capsicum spp. cultivars by Aphis gossypii is conferred by variation in volatile semiochemistry. Euphytica, 177(3), 299–307. doi.org/10.1007/s10681-010-0250-8
Du, Y. W., Shi, X. Bin, Zhao, L. C., Yuan, G. G., Zhao, W. W., Huang, G. H., & Chen, G. (2022). Chinese cabbage changes its release of volatiles to defend against Spodoptera litura. Insects, 13(1), 1–14. doi.org/10.3390/insects13010073
Dudareva, N., Pichersky, E., & Gershenzon, J. (2004). Biochemistry of plant volatiles. Plant Physiology, 135(4), 1893–1902. doi.org/10.1104/pp.104.049981
Gouinguené, S., Alborn, H., & Turlings, T. C. J. (2003). Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. Journal of Chemical Ecology, 29(1), 145–162. doi.org/10.1023/A:1021984715420
Hammerbacher, A., Coutinho, T. A., & Gershenzon, J. (2019). Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles. Plant Cell and Environment, 42(10), 2827–2843. doi.org/10.1111/pce.13602
Hegde, M., Oliveira, J. N., da Costa, J. G., Bleicher, E., Santana, A. E. G., Bruce, T. J. A., Caulfield, J., Dewhirst, S. Y., Woodcock, C. M., Pickett, J. A., & Birkett, M. A. (2011). Identification of semiochemicals released by cotton, Gossypium hirsutum, upon infestation by the cotton aphid, Aphis gossypii. Journal of Chemical Ecology, 37(7), 741–750. doi.org/10.1007/s10886-011-9980-x
Karban, R., Yang, L. H., & Edwards, K. F. (2014). Volatile communication between plants that affects herbivory: A meta-analysis. Ecology Letters, 17(1), 44–52. doi.org/10.1111/ELE.12205
Kessler, D., Bing, J., Haverkamp, A., & Baldwin, I. T. (2019). The defensive function of a pollinator-attracting floral volatile. Functional Ecology, 33(7), 1223–1232. doi.org/10.1111/1365-2435.13332
Kigathi, R. N., Weisser, W. W., Reichelt, M., Gershenzon, J., & Unsicker, S. B. (2019). Plant volatile emission depends on the species composition of the neighboring plant community. BMC Plant Biology, 19(1), 1–17. doi.org/10.1186/s12870-018-1541-9
Knudsen, J. T., Eriksson, R., Gershenzon, J., & Ståhl, B. (2006). Diversity and distribution of floral scent. Botanical Review, 72(1), 1–120. doi.org/10.1663/0006-8101(2006)
Kundu, A., Mishra, S., & Vadassery, J. (2018). Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. Planta, 248(4), 981–997. doi.org/10.1007/s00425-018-2953-3
Li, Y., Jia, W., Wang, Q., Wang, B., & Wang, S. (2022). Comparative analysis of floral scent profiles between two Chimonanthus praecox plants under different rhythms and blooming stages. Scientia Horticulturae, 301, 111129. doi.org/https://doi.org/10.1016/j.scienta.2022.111129
Mansour, S. A. A., Roff, M. N. M., Saad, K. A., Ismail, A., Nadia, M. K., & Idris, A. B. (2015). Identification of semiochemicals released by brinjal, tomato, okra and chilli plants infested with whitefly, B. tabaci. Libyan Journal of Basic Sciences, 2(1), 25–40.
Moran, P. J., & Thompson, G. A. (2001). Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiology, 125(2), 1074–1085. doi.org/10.1104/pp.125.2.1074
Ninkovic, V., Markovic, D., & Rensing, M. (2021). Plant volatiles as cues and signals in plant communication. Plant Cell and Environment, 44(4), 1030–1043. doi.org/10.1111/pce.13910
Paré, P. W., & Tumlinson, J. H. (1998). Cotton volatiles synthesized and released distal to the site of insect damage. Phytochemistry, 47(4), 521–526. doi.org/10.1016/S0031-9422(97)00442-1
Piesik, D., Łyszczarz, A., Tabaka, P., Lamparski, R., Bocianowski, J., & Delaney, K. J. (2010). Volatile induction of three cereals: Influence of mechanical injury and insect herbivory on injured plants and neighbouring uninjured plants. Annals of Applied Biology, 157(3), 425–434. doi.org/10.1111/j.1744-7348.2010.00432.x
Ren, Q., Cao, L., Su, J., Xie, M., Zhang, Q., Liu, X., Ren, Q., Cao, L., Su, J., Xie, M., Zhang, Q., & Liu, X. (2010). Volatile emissions from the invasive weed Eupatorium adenophorum induced by Aphis gossypii feeding and methyl jasmonate treatment. Weed Science, 58(3), 252–257. doi.org/10.1614/WS-D-09-00002.1
Riddick, E. W. (2020). Volatile and non-volatile organic compounds stimulate oviposition by aphidophagous predators. Insects, 11(10), 1–11. doi.org/10.3390/insects11100683
Rodriguez-Saona, C. R., & Frost, C. J. (2010). New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores. Plant Signaling and Behavior, 5(1), 58–60. doi.org/10.4161/psb.5.1.10160
Röse, U. S. R., & Tumlinson, J. H. (2004). Volatiles released from cotton plants in response to Helicoverpa zea feeding damage on cotton flower buds. Planta, 218(5), 824–832. doi.org/10.1007/s00425-003-1162-9
Saad, K. A., Mohamad Roff, M. N., Hallett, R. H., & Idris, A. B. (2015). Aphid-induced defences in chilli affect preferences of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Scientific Reports, 5(1), 13697. doi.org/10.1038/srep13697
Santamaria, M. E., Arnaiz, A., Gonzalez-Melendi, P., Martinez, M., & Diaz, I. (2018). Plant perception and short-term responses to phytophagous insects and mites. International Journal of Molecular Sciences, 19(5), 1–20. doi.org/10.3390/ijms19051356
Schettino, M., Grasso, D. A., Weldegergis, B. T., Castracani, C., Mori, A., Dicke, M., Van Lenteren, J. C., & Van Loon, J. J. A. (2017). Response of a predatory ant to volatiles emitted by aphidand caterpillar-infested cucumber and potato plants. Journal of Chemical Ecology, 43(10), 1007–1022. doi.org/10.1007/s10886-017-0887-z
Sharma, P. L., Verma, S. C., Chandel, R. S., Shah, M. A., & Gavkare, O. (2017). Functional response of Harmonia dimidiata (fab.) to melon aphid, Aphis gossypii Glover under laboratory conditions. Phytoparasitica, 45(3), 373–379. doi.org/10.1007/s12600-017-0599-5
Silva, D. B., Weldegergis, B. T., Van Loon, J. J. A., & Bueno, V. H. P. (2017). Qualitative and quantitative differences in herbivore-induced plant volatile blends from tomato plants infested by either Tuta absoluta or Bemisia tabaci. Journal of Chemical Ecology, 43(1), 53–65. doi.org/10.1007/s10886-016-0807-7
Smith, L., & Beck, J. J. (2015). Duration of emission of volatile organic compounds from mechanically damaged plant leaves. Journal of Plant Physiology, 188, 19–28. doi.org/10.1016/j.jplph.2015.08.003
Steglińska, A., Pielech-Przybylska, K., Janas, R., Grzesik, M., Borowski, S., Kręgiel, D., & Gutarowska, B. (2022). Volatile organic compounds and physiological parameters as markers of potato (Solanum tuberosum L.) infection with phytopathogens. In Molecules (Vol. 27, Issue 12, p. 3708). doi.org/10.3390/molecules27123708
Sun, Z., Lin, Y., Wang, R., Li, Q., Shi, Q., Baerson, S. R., Chen, L., Zeng, R., & Song, Y. (2021). Olfactory perception of herbivore-induced plant volatiles elicits counter-defences in larvae of the tobacco cutworm. Functional Ecology, 35(2), 384–397. doi.org/10.1111/1365-2435.13716
Turlings, T. C. J., Bernasconi, M., Bertossa, R., Bigler, F., Caloz, G., & Dorn, S. (1998). The induction of volatile emissions in maize by three herbivore species with different feeding habits: Possible consequences for their natural enemies. Biological Control, 11(2), 122–129. doi.org/10.1006/bcon.1997.0591
Venkanna, Y., & Suroshe, S. S. (2023). A simple technique for continuous rearing of cotton aphid, Aphis gossypii Glover. International Journal of Tropical Insect Science, 43(2), 519–526. doi.org/10.1007/s42690-023-00951-6
Vijaya, M., Rani, P. U., & Rajna, S. (2018). Induced indirect defense in chilli plant, Capsicum annuum L . due to feeding stress caused by herbivore, Spodoptera litura F . Journal of Entomology and Zoology Studies, 6(2), 1264–1270.
Wei, Z.-Q., Wang, J.-X., Guo, J.-M., Liu, X.-L., Yan, Q., Zhang, J., & Dong, S.-L. (2023). An odorant receptor tuned to an attractive plant volatile vanillin in Spodoptera litura. Pesticide Biochemistry and Physiology, 196, 105619. doi.org/https://doi.org/10.1016/j.pestbp.2023.105 619
Wu, M., Northen, T. R., & Ding, Y. (2023). Stressing the importance of plant specialized metabolites: omics-based approaches for discovering specialized metabolism in plant stress responses. Frontiers in Plant Science, 14, 1272363. doi.org/10.3389/fpls.2023.1272363
Xu, Q., Wu, C., Xiao, D., Jin, Z., Zhang, C., Hatt, S., Guo, X., & Wang, S. (2023). Ecological function of key volatiles in Vitex negundo infested by Aphis gossypii. Frontiers in Plant Science, 13(January), 1–11. doi.org/10.3389/fpls.2022.1090559
Yasa, V., Suroshe, S. S., & Nebapure, S. M. (2024). Behavioral response of zigzag ladybird beetle Cheilomenes sexmaculata to the HIPVs induced by cotton aphid, Aphis gossypii. Arthropod-Plant Interactions, 18(4), 771–780. doi.org/10.1007/s11829-024-10087-0
Zuo, Z., Weraduwage, S. M., Lantz, A. T., Sanchez, L. M., Weise, S. E., Wang, J., Childs, K. L., & Sharkey, T. D. (2019). Isoprene acts as a signaling molecule in gene networks important for stress responses and plant growth. Plant Physiology, 180(1), 124–152. doi.org/10.1104/pp.18.01391
Section
Research Articles

How to Cite

Chilli  plants (Capsicum annuum L. var Dumay) volatiles induced by Aphis gossypii (Hemiptera: Aphididae) and Spodoptera litura (Lepidoptera: Noctuidae). (2025). Journal of Applied and Natural Science, 17(2), 509-517. https://doi.org/10.31018/jans.v17i2.6394