Article Main

Manish Mathur

Abstract

Analysis of spatial distribution in ecology is often influenced by spatial autocorrelation. In present paper various techniques related with quantification of spatial autocorrelation were categorized. Three broad categories namely global, local and variogram were identified and mathematically explained. Local measurers captures the many local spatial variation and spatial dependency while global measurements provide only one set of values that represent the extent of spatial autocorrelation across the entire study area. Global spatial autocorrelation measures the overall clustering of data and it included six well defines methods, namely, Global index of spatial autocorrelation, Joint count statistics, Moran’s I, Geary’s C ration, General G-statistics and Getis and Ord’s G. The study revealed that out of the six methods Moran’s I index was most frequently utilized in plant population study. Based on their similarity degree, local indicator of spatial association (LISA) can differentiate the neighbors in to hot and cold spots. Correlogram and variogram approaches are also given.

Article Details

Article Details

Keywords

Correlogram, Global and Local Autocorrelation, Moran’s I Spatial Autocorrelation, Variogram approaches

References
Almeida-Neto, M. and Lewinsohn, T.M. (2004). Small-scale spatial autocorrelation and the interpretation of relationships between phenological parameters. Journal of Vegetation Sciences, 15(4): 561-568.
Anselin, L. (1995). Local Indicators of Spatial Association-LISA. Geographical Analysis
Anselin, L. (2002). Under the hood: issues in the specification and interpretation of spatial regression models. – Agriculture Economics, 17: 247-267.
Assuncao, R.M. and Reis, E.A. (1999). A new proposal to adjust Moran’s I for population density. Statistics in Medicine, 18(16): 2147-2162.
Besag, J. (1974). Spatial interaction and the statistical analysis of lattice system. Journal of the Royal Statistitical Society, 36: 192-225.
Boots, B.N. and Getis, A. (1988). Point Pattern Analysis, Newburry Park, CA, Sage Publication
Burrough, P.A. and McDonnell, R.A. (1998). Principles of Geographical Information Systems. Spatial Information Systems and Geostatistics. Oxford University Press, New York, 333
Chen, X., Li, B.L. and Zhang, X.S. (2008). Using spatial analysis to monitor tree diversity at large scale: a case study in Northeast China transect. Journal of Plant Ecology, 1(2): 137-141.
Chou, Y.H. (1997). Exploring spatial analysis in geographic information systems. Santa Fe: Onward Press.
Chuang, K.S. and Huang, H.K. (1992). Assessment of noise in a digital image using the joint-count statistic and the Moran test. Physics in Medicine and Biology, 37 (2): 357-369.
Cliff, A.D. and Ord, J.K. (1981). Spatial Processes, Models and Applications. London, Pion, pp. 34-41.
Congalton, R.G. (1988). Using spatial autocorrelation analysis to explore the errors in maps generated from remotely sensed data. Photogrammetric Engineering and Remote Sensing, 54: 587–592.
Cressie, N. (1991). Statistics for Spatial Data. Wiley, New York.
Cressie, N. and Collins L.B. (2001a). Patterns in spatial point locations: Local indicators of spatial association in a minefield with clutter. Naval Research Logistic, 48:333–347.
Cressie, N. and Collins, L.B. (2001b). Analysis of spatial point patterns using boundless of product density LISA functions. Journal of Agricultural Biology and Environment, 6:118–135.
Dale, M.T. (1999). Spatial pattern analysis in plant ecology. Cambridge University Press, Campridge, UK.
Diniz-Filho, J.A.F., Bini, L.M. and Hawkins, B.A. (2003). Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography, 12: 53–64.
Dormann, C. F. (2007). Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography, 16: 129-138.
Dormann, C.F., Jana, M.M., Miguel, B.A., Roger, B., Bolliger, J., Carl, G., Davies, R.G., Hirzel, A., Jets, W., Kissling, O., Kuhn, I., Ohlemuller, R., Neto-Peres, P.R., Reineking, B., Schroder, B., Schurr, F.M. and Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 30: 609-628.
Dray, S., Said, S. and Debias, F. (2008). Spatial ordination of vegetation data using a generalization of wartenberg’s multivariate spatial correlation. Journal of Vegetation Science, 19 (1): 45-56.
Fortin, M.J. and Dale, M.R.T. (2005). Spatial Analysis - A Guide for Ecologists. Cambridge University Press.
Fortin, M.J., Drapeau, P. and P. Legendre. (1989). Spatial autocorrelation and sampling design in plant ecology. Vegetatio, 83:209–222.
Fotheringham, A.S., Burnsdon, S. and Charlton, M. (2000). Quantitative geography: Perspectives on spatial data analysis. Sage Publications, Thousand Oaks, CA. pp 270.
Fox, E., Balram, S., Dragicevis, S. and Roberts, A. (2012). Spatial analysis of high resolution aerial photographs to analyse the spread of mountain pine beetle infestation. Journal of Sustainable development, 5 (9): 106-129.
Gangnon, R.E. and Clayton, M.K. (2001). A weighted average likelihood ratio test for spatial clustering of disease. Statistics in Medicine, 20:2977–2987.
Geary, R. (1954). The contiguity ratio and statistical mapping. The Incorporated Statistician 5: pp115-45
Getis, A. (1991). Spatial interaction and spatial autocorrelation: across-product approach Environment and Planning A, 23: 1269-1277.
Getis, A., and Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24 (3): 189-206
Getis, A. and Ord, J.K. (1996). Local spatial statistics: An overview. Spatial analysis: Modeling in a GIS environment. Longley, P., and M. Batty (eds.). Wiley, New York. pp. 261–277.
Gibson, D.J. (2002). Methods in Comparative Plant Population Ecology, Oxford University, UK. 344.
Goodchild, M. F. (1986). Spatial Autocorrelation. Catmog 47, Geo Books.
Goslee, S.C. (2006). Behavior of vegetation sampling methods in the presence of spatial autocorrelation. Plant Ecology, 187: 203-2012.
Griffith, D.A. (2003). Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Berlin, Germany: Springer-Verlag.
Griffith, D.A. and Peres-Neto, P.R. (2006). Spatial modeling in ecology: the flexibility of eigen function spatial analyses in exploiting relative location information. Ecology, 87: 2603-2613.
Haining, R. (1990). Spatial Data Analysis in Social and Environmental Sciences. Cambridge University Press: New York.
Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O’Brien, E.M., Porter, E.E. and Turner, J.R.G. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84: 3105–3117.
Heikkinen, R.K. (1996). Predicting patterns of vascular plant species richness with composite variables: a meso-scale study in Finnish Lapland. Vegetatio, 126: 151–165.
Henebry, G.M. (1995). Spatial model error analysis using autocorrelation indices. Ecological Modelling 82: 75–91.
Hjalmars, U., Kulldorff, M., Gustafsson G. and Nagarwalla, N. (1996). Childhood leukemia in Sweden: Using GIS and a spatial scan statistic for cluster detection. Statistics in Medicine, 15:707–715.
Hubert, L., Golledge, R. and Costanzo, C.M. (1981). Generalized procedures for evaluating spatial autocorrelation. Grographical Analysis, 13: 224-233
Huo, X., N., Li, H., Sun, D.F., Zhou, L.D. and Li, B.G. (2012). Combining geostatistics with Moran’s I analysis for mappings soil heavy metals in Beijing, China. International Journal of Environmental Research and Public Health, 9: 995-1017.
Isaaks, E.H. and Shrivastava, R.M. (1989). An introduction to applied geo-statistics. - Oxford University Press.
Jackson, M.C. and Waller, L.A. (2005). Exploring Goodness-of-fit and spatial correlation using components of Tango's Index of spatial clustering. Geographical Analysis, 37(4):371-382.
Jackson, M.C., Huang, L., Xie, Q and Tiwari, R. (2010). A modified version of Moran’s I. International Journal of Health Geographic, 9: 33-43.
Koenig, W.D. (1998). Spatial autocorrelation in California land birds. Conservation Biology, 12:612–620.
Kühn, I. (2007). Incorporating spatial autocorrelation may invert observed patterns. Diversity and Distribution, 13 (1): 66-69.
Kulldorff, M. (1997). A spatial scan statistic. Community Statics Theory and Methods, 26:1481–1496.
Laffan, S.W. (2006). Assessing regional scale weed distributions, with an Australian example using Nassella trichotoma. Weed Research, 46(3): 194-206.
Lee, J. and Wong, D.W.S. (2001). Statistical analysis with ArcView GIS. Wiley, New York. 192 p.
Legendre, L. and Legendre, P. (1984). l~cologie numrrique. 2irme ed. Tome 2: La structure des donnres 6cologiques. Masson, Paris et les Presses de l'Universit6 du Quebec.
Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology, 74: 1659-1673.
Legendre, P. and Fortin, M.J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80: 107-38.
Legendre, P. and Legendre, L. (1998). Numerical Ecology. Elsevier. USA.
Legendre, P., Dale, M.T.R., Fortin, M.J., Gurvitch, J., Hohn, M. and Myers, D. (2002). The consequences of spatial structure for the design and analysis of ecological field surveys. – Ecography, 25: 601-615.
Lennon, J.J. (2000). Red-shifts and red herrings in geographical ecology. Ecography, 23: 101-113.
Mathur, M. (2014). Attributes of Plant Spatial Analysis. Today and Tomorrow Printer and Publishers, New Delhi, India.
Miller, J. Franklin, J. and Aspinall, R. (2007). Incorporating spatial dependence in predictive vegetation models. Ecological Modeling, 202: 225-242.
Moran, P.A.P. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society, Series B, 10: 243-251.
Mueller-Warrant, G.W., Whittaker, G.W. and Young, W.C. (2008). GIS analysis of spatial clustering and temporal change in weeds of grass seed crops. Weed Science, 56 (5): 647-669.
Oden N. (1995). Adjusting Moran’s I for population density. Statatistical Medicine, 14(1):17-26.
Oden N.L. (1984). Assessing the significance of a spatial correlogram. Geographical Analysis, 16: 1-16.
Odland, J. (1988). Spatial autocorrelation. In: G.I. Thrall (Ed.), Sage University Scientific Geography Series no. 9. Sage Publications, Beverly Hills. pp 87.
Ord, J.K and Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27: 286-306.
Overmars, K.P., Koning, G.H.I. and Velkamp, A. (2003). Spatial autocorrelation in multi-scale land use models. Ecological Modeling, 164: 257-270.
Palma, L. Beja, P. and Rodrigues, M. (1999). The use of sighting data to analyze Iberian lynx habitat and distribution. Journal of Applied Ecology, 36: 812- 824.
Perry, J.N., Liebhod, A.M., Rosenbery, M.S., Dungan, I., Miriti, M., Jakomulska, A. and Citron-Pousty, S (2002). Illustrations and guidelines for selecting statistical methods for quantifying spatial paterrns in ecological data. Ecography, 25: 578-600.
Pugh, S. and Congalton, R. (2001). Applying spatial autocorrelation analysis to evaluate error in New England forest cover type maps derived from Landsat Thematic Mapper Data. Photogrammetric Engineering and Remote Sensing, 67 (5): 613-620.
Radeloff, V.C., Miller, T.F., He, H. S. and D..J. Mladenoff. (2000). Periodicity in landscape pattern and geostatistical models: autocorrelation between patches. Ecography, 23: 81–91.
Robertson G.P. (2008). GS+ Geostatistics for the environmental sciences. Gamma Design Software, Plainwell, Michigan USA. P. 165.
Roe, C.M., Parker, G.C., Korsten, C.A., Lister, C.J., Weatherall, S.B., Lawrence Lodge, R.H, E. and Wilson, B.J. (2012). Small-scale spatial autocorrelation in plant communities: the effects of spatial grain and measure of abundance, with an improved sampling scheme. Journal of Vegetation Science, 23: 471-482.
Rogerson P. (1999). The detection of clusters using a spatial version of the Chi- Square Goodness-of-Fit Statistic. Geographical Analysis, 31(1):128-147.
Shi, H., and Zhang, L. (2003). Local analysis of tree competition and growth. Forest Science, 49 (6): 938-946.
Sokal, R.R. and Oden, N.L. (1978). Spatial autocorrelation in biology. 1. Methodology. Biological Journal of Linnaeus Society, 10: 199-228.
Sokal, R.R. (1986). Spatial S data analysis and historical processes. In: Diday, E. (eds), Data analysis and informatics, IV. Proceedings of the Fourth International Symposium on Data Analysis and Informatics, pp. 29-43. Versailles, France, North-Holland, Amsterdam.
Sokal, R.R., Oden, N.L. and Thomson, B.A. (1998a). Local spatial autocorrelation in a biological model. Geographical Analysis, 30:331–354.
Sokal, R.R. Oden, N.L. and Thomson, B.A. (1998b). Local spatial autocorrelation in a biological variables. Biological Journal of Linnaeus Society, 65:41–62.
Su-Wei, F. and Hsieh, C.F. (2010) spatial autocorrelation patterns of understory plant species in a subtropical rainforest at Lanjenchi, Southern Taiwan. Taiwan, 55: 160-171.
Suzuki, S.N., Kachi, N. and Suzuki, J.I. (2008). Development of a local size hierarchy causes regular spacing of trees in an even-aged Abies forest: Analyses using spatial autocorrelation and the mark correlation function. Annals of Botany, 102(3): 435-441.
Tobin, P.C. (2004). Estimation of the spatial autocorrelation function: consequences of sampling dynamic populations in space and time. Ecography, 27(6): 767-775.
Torgersen, C.E., Jones, J.A., Moldenke, A.R. and LeMaster, M.P. (1995). The spatial heterogeneity of soil invertebrates and edaphic properties in an old growth forest stand in western Oregon. Pages 225–236 in H.P. Collins, G.P. Robertson, and M.J. Klug, editors. The significance and regulation of soil biodiversity. Kluwer Academic Publishers, Dordrecht, Netherlands.
Unwin, D.J. (1996). GIS, spatial analysis and spatial statistics. Progress in Human Geography. 20:540–551.
Upton, G.J. and Fingleton, B. (1985). Spatial data analysis by example, volume 1: Point pattern and quantitative data. Wiley, Toronto Singapore, Brisbane, New York, Chichester
Waldhor T. (1996). The spatial autocorrelation coefficient Moran’s I under heteroscedasticity. Statistics in Medicine, 15(7-9):887-892.
Waller, L.A. and Gotway, C.A. (2004). Applied Statistics for Public Health Data. New York: Wiley.
Waller, L.A., Hill, E.G. and Rudd, R.A. (2006). The geography of power: statistical performance of tests of clusters and clustering in heterogeneous populations. Statistics in Medicine, 25(5):853-865.
Weixelman, D.A. and Riegel, G.M. (2012). Measurement of spatial autocorrelation of vegetation in mountain meadows of the Sierra-Nevada, California and Western Nevada. Madrono, 59: 143-149.
Wulder, M. and Boots, B. (1998). Local spatial autocorrelation characteristics of remotely sensed imagery assessed with the Getis statistic. International Journal of Remote Sensing, 19: 2223–2231.
Wulder, M. and Boots B. (2001). Local spatial autocorrelation characteristics of Landsat TM imagery of a managed forest area. Canadian Journal of Remote Sensing, 27:67–75.
Zhang, C.S. and McGrath, D. (2004). Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of south-eastern Ireland from two different periods. Geoderma, 119: 261–275.
Zhang, C.S., Tao, S., Yuan, G.P. and Liu, S. (1995). Spatial autocorrelation analysis of trace element contents of soil in Tianjin plain area (in Chinese, with English abstract). Acta Pedology Sinica, 32: 50–57.
Zhang, C.S. Zhang, S. and He, J.B. (1998). Spatial distribution characteristics of heavy metals in the sediments of Changjiang River system—Spatial autocorrelation and fractal methods (in Chinese, with English abstract). Acta Geogaphyr Sinica, 53: 87–96.
Section
Research Articles

How to Cite

Spatial autocorrelation analysis in plant population: An overview. (2015). Journal of Applied and Natural Science, 7(1), 501-513. https://doi.org/10.31018/jans.v7i1.639