Article Main

Nassir Abdullah Alyousif Yasin Y. Y. Al-luaibi Wijdan H. Al-tamimi

Abstract

Rhamnolipids are glycolipid biosurfactants produced by Pseudomonas sp. that can be applied in many fields, such as medicine, pharmaceuticals, cosmetics and food processing. The rhamnolipid utilized in the present study was produced from Pseudomonas aeruginosa which was isolated from hydrocarbon-contaminated soil. Different rhamnolipid concentrations were evaluated as anticancer agents against cancer cell lines, including the Hela cell line and the L20B cell line, and as antibiofilm agents against four pathogenic bacteria, including Escherichia coli, Bacillus cereus, Staphylococcus aureus and Klebsiella pneumoniae. Results showed that the rhamnolipid inhibited the proliferation of the cervical cancer cell line (Hela) during exposure. The inhibitory effect of rhamnolipid against the Hela cell line increased with the increasing concentration of rhamnolipid. The 750 µg/ml concentration recorded a higher inhibitory effect, while the 50 µg/ml concentration recorded a lower inhibitory effect against the Hela cell line. Similarly, the concentration of 750 µg/ml recorded a higher inhibitory effect, while the concentration of 62.5 µg/ml recorded a lower inhibitory effect against the L20B cell line. The results exhibited the best rhamnolipid activity as an antibiofilm agent against pathogenic bacteria at a concentration of 1 mg/ml for E. coli, B. cereus, and K. pneumoniae, while exhibiting the best antibiofilm activity against Staphylococcus aureus at a concentration of 2 mg/ml when incubated with different concentrations of rhamnolipid. The rhamnolipid showed high effectiveness as antibiofilm and anticancer agent, which constitutes a promising agent for use against pathogenic bacteria to prevent the formation of biofilm and an alternative therapeutic agent as an anticancer.


 

Article Details

Article Details

Keywords

Anticancer, Antibiofilm, Rhamnolipid, Biosurfactant, Pseudomonas

References
Abdollahi, S., Tofighi, Z., Babaee, T., Shamsi, M., Rahimzadeh, G., Rezvanifar, H., Saeidi, E., Amiri, M. M., Ashtiani, Y. S. & Samadi, N. (2020). Evaluation of anti-oxidant and anti-biofilm activities of biogenic surfactants derived from Bacillus amyloliquefaciens and Pseudomonas aeruginosa. Iranian Journal of Pharmaceutical Research, 19(2): 115.‏ DOI: 10.22037/IJPR.2020.1 101033
Almansoory, A. F., Talal, A., Al-Yousif, N. A. and Hazaimeh, M. (2019). Isolation and identification of microbial species for hydrocarbon degradation in contaminated soil and water. Plant Archives, 19(1): 971-977
Al-Razn, R. S. & Abdul-Hussein, Z. R. (2021). Anti-biofilm activity of rhamnolipid extracted from Pseudomonas aeruginosa. Annals of the Romanian Society for Cell Biology, 25(6): 1731–1743.‏
Al-Shammari, A. M., Al-Esmaeel, W. N., Al-Ali, A. A., Hassan, A. A. & Ahmed A. A. (2019). Enhancement of oncolytic activity of Newcastle disease virus through combination with retinoic acid against digestive system malignancies. Molecular Therapy, 27(451).
Alyousif, N. A., Al-Luaibi, Y. Y. Y. & Hussein, W. (2020a). Distribution and molecular characterization of biosurfactant-producing bacteria. Biodiversitas, 21(9): 4034–4040. DOI: 10.13057/biodiv/d210914
Alyousif, N. A., Al-Tamimi, W. H. & Al-Luaibi, Y. Y. Y. (2020b). Screening, enhance production and characterization of biosurfactant produced by Pseudomonas aeruginosa isolated from hydrocarbon contaminated soil. Eurasia Journal of Bioscience, 14: 4377–4391.
Alyousif, N. A., Al-Tamimi, W. H. & Al-Luaibi, Y. Y. Y. (2023). Antimicrobial and antioxidant activity of rhamnolipids biosurfactant is produced by Pseudomonas aeruginosa. Revista Bionatura, 8(4): 25. DOI.org/10.21931/RB/2023.08.04.25
Ari, M. M., Dadgar, L., Elahi, Z., Ghanavati, R. & Taheri B. (2024). Genetically engineered microorganisms and their impact on human health. International Journal of Clinical Practice, 2024(1): 6638269.‏ DOI.org/10.1155/ 2024/6638269
Banat, I. M., De Rienzo, M. A. D. & Quinn, G. A. (2014). Microbial biofilms: biosurfactants as antibiofilm agents. Applied microbiology and biotechnology, 98: 9915–9929.‏ DOI: 10.1007/s00253-014-6169-6
Bolhassani, A. (2015). Cancer chemoprevention by natural carotenoids as an efficient strategy. Anticancer Agents in Medicinal Chemistry, 15(8): 1026–1031.
Chaudhry, G. E. S., Akim, A., Sung, Y. Y. & Sifzizul, T. M. T. (2022). Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Frontiers in Pharmacology, 13: 842376.‏ DOI: org/10.3389/fphar.2022.842376
Chong, H. & Li, Q. (2017). Microbial production of rhamnolipids: opportunities, challenges and strategies. Microbial Cell Factories, 16(1): 137. DOI: 10.1186/s12934-017-0753-2
Christova, N., Tuleva, B., Kril, A., Georgieva, M., Konstantinov, S., Terziyski, I., Nikolova, B. & Stoineva, I. (2013). Chemical Structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Applied Biochemistry and Biotechnology, 170(3), 676–689. DOI:10.1007/s12010-013-0225-z
De Giani, A., Zampolli, J. & Di Gennaro, P. (2021). Recent trends on biosurfactants with antimicrobial activity produced by bacteria associated with human health: different perspectives on their properties, challenges, and potential applications. Frontiers in Microbiology, 12:655150. DOI: 10.3389/fmicb.2021.655 150
Deka, N. (2014). Comparison of tissue culture plate method, tube method and Congo red agar method for the detection of biofilm formation by Coagulase Negative Staphylococcus isolated from Non-clinical Isolates. International Journal of Current Microbiology and Applied Sciences, 3(10): 810–815.
Fracchia, L., Ceresa, C. & Banat, I. M. (2019). Biosurfactants in cosmetic, biomedical and pharmaceutical industry. Microbial Biosurfactants and their Environmental and Industrial Applications, 258–287.
Gudiña, E. J, Rangarajan, V., Sen, R. & Rodrigues, L. R. (2013). Potential therapeutic applications of biosurfactants. Trends in PharmacologicalSsciences, 34(12): 667–675. DOI: 10.1016/j.tips.2013.10.002
Jiang, J., Zu, Y., Li, X., Meng, Q. & Long, X. (2020). Recent progress towards industrial rhamnolipids fermentation: Process optimization and foam control. Bioresource Technology, 298: 122394. DOI.org/10.1016/j.biortech.2019.122394
Janakiram, N. B., Mohammed, A. & Rao, C. V. (2015). Sea cucumbers metabolites as potent anticancer agents. Marine Drugs, 13(5): 2909–2923. DOI: 10.3390/md13052909
Kaur, G. & Verma, N. (2015). Nature curing cancer—Review on structural modification studies with natural active compounds having anti-tumor efficiency. Biotechnology Report, 6: 64–78. DOI: 10.1016/j.btre.2015.01.005
Mathur, T., Singhal, S., Khan, S., Upadhyay, D. J., Fatma, T. & Rattan, A. (2006). Detection of biofilm formation among the clinical isolates of staphylococci: An evaluation of three different screening methods. Indian Journal of Medical Microbiology, 24(1): 25–29. DOI.org/10.1016/S0255-0857(21)02466-X
Paulino, B. N., Pessôa, M. G., Mano, M. C. R., Molina, G., Neri-Numa, I. A. & Pastore, G. M. (2016). Current status in biotechnological production and applications of glycolipid biosurfactants. Applied Microbiology and Biotechnology, 100(24): 10265–10293. DOI:10.1007/s00253-016-7980-z
Penesyan, A., Gillings, M. & paulsen, I. T. (2015). Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules, 20(4): 5286–5298.‏ DOI: org/10.3390/molecules20045286
Rahimi, K., Lotfabad, T. B.,, Jabeen, F. & Ganji, S. M. (2019). Cytotoxic effects of mono- and di-rhamnolipids from Pseudomonas aeruginosa MR01 on MCF-7 human breast cancer cells. Colloids and Surfaces B: Biointerfaces. DOI:10.1016/j.colsurfb.2019.06.058
Skariyachan, S., Sridhar, V. S., Packirisamy, S., Kumargowda, S. T. & Challapilli, S. B. (2018). Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiologica, 63: 413–432.‏ DOI: org/10.1007/s12223-018-0585-4
Silva, S. S., Carvalho, J. W. P., Aires, C. P. & Nitschke, M. (2017). Disruption of Staphylococcus aureus biofilms using rhamnolipid biosurfactants. Journal of Dairy Science, 100(10): 7864–7873. DOI.org/10.3168/jds.2017-13012.
Talib, W. H., Alsayed, A. R., Barakat, M., Abu-Taha, M. I. & Mahmod AI. (2021). Targeting drug chemo-resistance in cancer using natural products. Biomedicines, 9(10): 1353.‏ DOI: org/10.3390/biomedicines9101353
Thanomsub, B., Pumeechockchai, W., Limtrakul, A., Arunrattiyakorn, P., Petchleelaha, W., Nitoda, T. & Kanzaki, H. (2006). Chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. Bioresource Technology, 97(18): 2457–2461. DOI: 10.1016/j.biortech.2005.10.029
Yamasaki, R., Kawano, A., Yoshioka, Y. & Ariyoshi W. (2020). Rhamnolipids and surfactin inhibit the growth or formation of oral bacterial biofilm. BMC microbiology, 20(1): 1–11. DOI: org/10.1186/s12866-020-02034-9
Yan, X., Gua, S., Cuia, X., Shia, Y., Wena, S., Chenb, H. & Ge, J. (2019). Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microbial pathogenesis, 127: 12–20. DOI: org/10.1016/ j.micpath.2018.11.039
Section
Research Articles

How to Cite

Evaluation of bacterial biosurfactant activities as an anticancer and antibiofilm agent. (2025). Journal of Applied and Natural Science, 17(1), 313-319. https://doi.org/10.31018/jans.v17i1.6372