Green synthesis of silver nanoparticles using leaves of Lantana camara: Impact of extract quantity, reaction time on shape, size and antibacterial activity
Article Main
Abstract
Types of plant extract, concentration of precursor solution and the incubation time play a significant role in the kinetics of nanoparticle formation during green synthesis. The present study focused on the effect of these factors on the size, uniformity and antibacterial activity of synthesized silver nanoparticles (AgNPs). Lantana camara leaf extract was used as a reducing and stabilizing agent for the biosynthesis of AgNPs. The synthesis process involved the careful preparation of leaf extract (10%), followed by the reaction of different volumes 10, 5, 2 and 1ml of extract with 50ml of 1.0mM silver nitrate solution under controlled conditions with reaction time of 10, 30, 45 and 1hrrespectively-vis spectrum indicated a characteristic single peak at 423nm, 429nm, 435nm and 443nm for samples following increasing quantity of leaf extract. Transmission electron microscopy (TEM) revealed a decrease in the size of nanoparticles and an increase in incubation time. The size of the particles was 12 nm, 15nm, 17nm and 23nm, respectively, during the incubation time of 10, 30, 45 and 1hr. The antibacterial efficacy of the AgNPs was evaluated against Escherichia coli O157:H7, and a significant increase in antibacterial activity was demonstrated with a decrease in size. FTIR revealed the involvement of hydroxyl, carbonyl and amide groups in reducing and stabilizing agents present in leaf extract for the synthesis of nanoparticles. This study authenticates the advantages of using L. camara for green synthesis of silver nanoparticles; more prolonged incubation with lower concentrations of precursor solution resulted in smaller nanoparticles with higher antibacterial activity.
Article Details
Article Details
Antibacterial activity, Extract concentration, Green synthesis, Lantana camara, Reaction time, Silver nanoparticles
Arshad, F., Naikoo, G. A., Hassan, I. U., et al. (2024). Bioinspired and green synthesis of silver nanoparticles for medical applications: A green perspective. Applied Biochemistry and Biotechnology, 196, 3636–3669. doi:10.1007/s12010-023-04719-z
Azad, M., Hasan, S., and Sulaiman, F. (2023). Factors influencing the green synthesis of metallic nanoparticles using plant extracts: A Comprehensive review. Pharmaceutical Fronts, 5(3), e117-e123. doi: 10.1055/a-2102-4563
Banerjee, P., Satapathy, M., Mukhopahayay, A., & Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing, 1(1), 3. doi:10.1186/s40643-014-0003-y
Dong, Y., Zhu, H., Shen, Y., Zhang, W., & Zhang, L. (2019). Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. PloS one, 14(9), e0222322.doi:10.1371/journal.pone.0222322
Elemike, E. E., Onwudiwe, D. C., & Ekennia, A. C. (2020). Eco-friendly synthesis of silver nanoparticles using Umbrella plant, and evaluation of their photocatalytic and antibacterial activities. Inorganic and Nano-Metal Chemistry, 50(5), 389–399. doi:10.1080/24701556.2020.1716005
Ghosh, S., Patil, S., Ahire, M., Kitture, R., Kale, S., Pardesi, K., Cameotra, S. S., Bellare, J., Dhavale, D. D., Jabgunde, A., & Chopade, B. A. (2012). Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International Journal of Nanomedicine, 7, 483–496. doi:10.2147/IJN.S24793
Giri, V. A., Sastry, S. V. A. R., & Kapoor, A. (2023). Biomass-assisted green synthesis and characterization of silver nanoparticles using Azadirachta indica, Ocimum basilicum, and Curcuma longa: Evaluation of antifungal potential. Biomass Conversion and Biorefinery. doi:10.1007/s13399-023-05177-7
Gupta, G. K., Koli, D., & Kapoor, R. K. (2024). Statistical optimization for greener synthesis of multi-efficient silver nanoparticles from the Hypocrea lixii GGRK4 culture filtrate and their ecofriendly applications. Frontiers in Nanotechnology, 6, 1384465.doi:10.3389/fnano.2024.1384465
Jadoun, S., Arif, R., Jangid, N. K., & others. (2021). Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 19(1), 355–374. doi:10.1007/s10311-020-01074-x
Jalilian, F., Chahardoli, A., Sadrjavadi, K., Fattahi, A., & Shokoohinia, Y. (2020). Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Advanced Powder Technology, 31(3), 1323–1332. doi:10.1016/j.apt.2020.01.011
Kazemi, S., Hosseingholian, A., Gohari, S. D., Feirahi, F., Moammeri, F., Mesbahian, G., Moghaddam, Z. S., & Ren, Q. (2023). Recent advances in green synthesized nanoparticles: From production to application. Materials Today Sustainability, 24, 100500. doi:10.1016/j.mtsust.2023.100500
Khan, S. A., Shahid, S., & Lee, C. S. (2020). Green synthesis of gold and silver nanoparticles using leaf extract of Clerodendrum inerme: Characterization, antimicrobial, and antioxidant activities. Biomolecules, 10(6), 835. doi:10.3390/biom10060835
Lahiri, A. (2016). Chapter 5: Diffraction and scattering. In A. Lahiri (Ed.), Basic optics (pp. 385-537). Elsevier. doi:10.1016/B978-0-12-805357-7.00005-8
Liaqat, N., Jahan, N., Khalil-Ur-Rahman, A., Anwar, T., & Qureshi, H. (2022). Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Frontiers in Chemistry, 10, 952006. doi: 10.3389/fchem.2022.952006
Menichetti, A., Mavridi-Printezi, A., Mordini, D., & Montalti, M. (2023). Effect of Size, Shape and Surface Functionalization on the Antibacterial Activity of Silver Nanoparticles. Journal of Functional Biomaterials, 14(5), 244. doi: 10.3390/jfb14050244.
Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346–356. doi:10.1016/j.biotechadv.2013.01.003)
Mondal, S. K., Chakraborty, S., Manna, S., & Mandal, S. M. (2024). Antimicrobial nanoparticles: Current landscape and future challenges. RSC Pharmaceutics, 1(3), 388–402. doi:10.1039/D4PM00032C
Murray, C. J. L., Ikuta, K. S., Sharara, F., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. doi:10.1016/S0140-6736(21)02724-0
Quevedo, A. C., Guggenheim, E., Briffa, S. M., Adams, J., Lofts, S., Kwak, M. ...& Valsami-Jones, E. (2021). UV-Vis Spectroscopic Characterization of Nanomaterials in Aqueous Media. Journal of Visualized Experiments: JoVE, (176). doi: 10.3791/61764
Radulescu, D. M., Surdu, V. A., Ficai, A., Ficai, D., Grumezescu, A. M., & Andronescu, E. (2023). Green synthesis of metal and metal oxide nanoparticles: A review of the principles and biomedical applications. International Journal of Molecular Sciences, 24(20), 15397.doi:10.3390/ijms242015397
Rana, A., Yadav, K., Jagadevan, S. (2020). A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J. Clean. Prod. 272:122880. doi: 10.1016/j.jclepro.2020.122880.
Roy, P., Das, B., Mohanty, A. & Sujata, M. (2017) Green synthesis of silver nanoparticles using Azadirachta
indica leaf extract and its antimicrobial study. Appl
Nanosci 7, 843–850. doi:10.1007/s13204-017-0621-8
Ruwanza, S. (2020). Effects of Lantana camara invasion on vegetation diversity and composition in the Vhembe Biosphere Reserve, Limpopo Province of South Africa. Scientific African (10) e00610, doi:10.1016/j.sciaf.2020.e00610.
Shah, M., Alharby, H.F. & Hakeem, K.R. (2020).Lantana camara: A Comprehensive Review on Phytochemistry, Ethnopharmacology and Essential Oil Composition. Letters in Applied NanoBioScience 9(3)1199 – 1207.doi:10.33263/LIANBS93.11991207
Smith, B. C. (2011). Fundamentals of Fourier Transform Infrared Spectroscopy (2nd ed.). CRC Press, Boca Raton, FL. pp. 92-93.
Srikar, S., Giri, D., Pal, D., Mishra, P. and Upadhyay, S. (2016) Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry, 6, 34-56. doi: 10.4236/gsc.2016.61004.
Syame, S. M., Mansour, A. S., Khalaf, D. D., Ibrahim, E. S., & Gaber, E. S. (2020). Green synthesis of silver nanoparticles using lactic acid bacteria: assessment of antimicrobial activity. World's Veterinary Journal, (4), 625-633.doi:10.54203/scil.2020.wvj75
Velgosova, O., Dolinská, S., Podolská, H., Mačák, L., & Čižmárová, E. (2024). Impact of Plant Extract Phytochemicals on the Synthesis of Silver Nanoparticles. Materials,17(10), 2252.doi:10.3390/ma17102252
Wang, L., Hu, C. and Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine, 12, 1227-1249. doi: 10.2147/IJN.S121956.
Zhang, S., Lin, L., Huang, X., Lu, Y. G., Zheng, D. L., & Feng, Y. (2022). Antimicrobial properties of metal nanoparticles and their oxide materials and their applications in oral biology. Journal of Nanomaterials, 2022(1), 2063265. doi:10.1155/2022/2063265

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)