Article Main

Mohammed Nizam Uddin Mumtahin Taharima Chowdhury Khaled Mahmud Sofi Mahmud Parvez A.N.M. Rezaul Karim

Abstract

The impact of climate change has been a vital problem where CO2 emission is one of the greatest contributors to global warming, and it has a negative effect on the environment.The core objective of this study was to understand, analyse and forecast the future CO2    emission in Bangladesh, Bhutan, Nepal, and Pakistan using the Autoregressive Integrated Moving Average (ARIMA) and Simple Exponential Smoothing (SES) models. Annual CO2   emission data produced from various carbon fuels and industries from 1946 to 2021 for Bangladesh, 1970 to 2021 for Bhutan, 1950 to 2021 for Nepal and from 1946 to 2021 for Pakistan were collected from the World Data Bank database and other sources. The study used this data to predict the CO2   emission for the next 27 years, from 2024 to 2050. The ARIMA and SES models with the highest accuracy for Bangladesh, Bhutan, Nepal and Pakistan were determined by possessing the lowest value of Akaike’s Information Criterion (AIC) with a graphical representation of ACF and PACF plots. Based on this method, ARIMA (0,1,1), ARIMA (0,1,0), ARIMA (1,1,1), ARIMA (0,1,0) were assumed to be the most perfect technique for predicting the CO2   emission in Bangladesh, Bhutan, Nepal, and Pakistan. These models were used to draw numerical pictures of future CO2   emission. Projected carbon dioxide emission values in Bangladesh, Bhutan, Nepal and Pakistan will increase, indicating major climate change and global warming. Different policies and strategies should be developed to tackle this situation.


 

Article Details

Article Details

Keywords

Carbon dioxide emission, Simple Exponential Smoothing (SES) Model, Autoregressive Integrated Moving Average (ARIMA) model

References
Bonga, Nyoni, T., & G., W. (2019). Prediction of ۱۽ ૛Emissions in India using ARIMA Models. Dynamic Research Journals (drj) , 4(2), 1-10. 
​Chigora, D. F., Thabani, N., & Mutambara, D. E. (2019). Forecasting 2 Emission for Zimbabwe’s Tourism Destination vibrancy: A Univariate Approach using Box- Jenkins ARIMA Model. African Journal of Hospitality, Tourism and Leisure, 8(2), 1-15. 
​CHIPO, Thabani, N., & Mutongi. (2019). Modeling and forecasting carbon dioxide emissions in China using Autoregressive Integrated Moving Average (ARIMA) models. Munich Personal RePEc Archive, 1-13. 
​Defying Expectations, CO2 Emissions from Global Fossil Fuel Combustion are Set to Grow in 2022 by Only a Fraction of Last Year’s Big Increase. (2022). International Energy Agency. 
​Dong, H., Xue, M., Xiao, Y., & Liu, Y. (2021). Do carbon emissions impact the health of residents? Considering China’s industrialization and urbanization. Science of the Total Environment, 758, 143688. DOI:10.1016/j.scitotenv.2020.143688
​Dritsaki, Chaido, & Dritsaki, M. (2014). Causal relationship between energy consumption, economic growth and CO2 emissions: A dynamic panel data approach. 4.2(125-136). 
​Dritsaki, M., & Dritsaki, C. (2020). Forecasting European Union CO2 Emissions Using Autoregressive Integrated Moving Average-autoregressive Conditional Heteroscedasticity Models. International Journal of Energy Economics and Policy , 10(4), 411-423. DOI: https://doi.org/10.32479/ijeep.9186
​Fatima, Samreen, Ali, & Saad, S. (2019). Forecasting Carbon Dioxide Emission of Asian Countries Using ARIMA and Simple. Int. J. Econ. Environ. Geol, 65. DOI:10.46660/ojs.v10i1.219
​Friedlingstein. (2022). Global Carbon Budget 2022. Earth System Science Data, 14, 4811–4900. DOI:10.5194/essd-14-4811-2022
​Hossain, A., Islam, M. A., Kamruzzaman, M., Khalek, M. A., & Ali, M. A. (2017). Forecasting Carbon Dioxide Emissions in Bangladesh Using Box Jenkins ARIMA Models. International Journal of Statistical Sciences, 16, 33-48. 
​ ​Jevrejeva, S., Jackson, L. P., Grinsted, A., Lincke, D., & Marzeion, B. (2018). Flood damage costs under the sea level rise with warming of 1.5 ◦C and 2 ◦C. Environmental Research Letters, 13(7), 1-12. DOI:10.1088/1748-9326/aacc76
​Magazzino, C., Mele, M., & Schneider, N. (2020). The relationship between air pollution and COVID-19-related deaths: An application to three French cities. Applied Energy, 279, 115835. DOI:10.1016/j.apenergy.2020.115835
​Masson-Delmotte. (2021). IPCC Climate Change 2021: The Physical Science Basis. Cambridge Univ. Press. 
​Ning, L., Pei, L., & L, F. (2021). Forecast of China’s Carbon Emissions Based on ARIMA Method. Discrete Dynamics in Nature and Society, 2-12. DOI:10.1 155/2021/1441942
​Parvez, S. M. (2023). Analyzing Bangladesh's Present Patterns in Population Growth and. International Journal of Scientific Research in , 41-48. 
​Parvez, S. M., Uddin, M. N., & Karim, A. N. (2023). Projection of Carbon Dioxide Discharge by applying ARIMA Model in Bangladesh. Journal of Computer Science & Computational Mathematics, 118-121. DOI:10.20967/jcscm.2023.04.003
​Rahman, A., & Hasan, M. M. (2017). Modeling and Forecasting of Carbon Dioxide. Open Journal of Statistics, 560-566. DOI:10.4236/ojs.2017.74038
​Sarkar, M. S., Sadeka, S., Sikdar, M. M., & Badiuzzaman. (2018). ENERGY CONSUMPTION AND CO2EMISSION IN BANGLADESH:TRENDS AND POLICY IMPLICATIONS. Asia Pacific Journal of Energy and Environment, 5(1), 41-48. DOI:10.18034/apjee.v5i1.249
​Sawant, Manoj, & Vineet. (2022). Forecasting Carbon Dioxide Emission from Energy Consumption within the Industrial Sector in U.S. NORMA eResearch platform, 1-22. 
​Sharma, V. K., & Nigam, U. (2020). Modeling and Forecasting of COVID19 Growth Curve in India. Transactions of the Indian National Academy of Engineering, 5, 697–710. DOI:10.1007/s41403-020-00165-z
​Shirmohammadi, Soltanieh, Romeo, & L.M. (2018). Thermoeconomic analysis and optimization of post-combustion CO2 recovery unit utilizing absorption refrigeration system for a natural-gas-fired power plant. Environmental Progress & Sustainable Energy, 37(3), 1075–1084. DOI:10.1002/ep.12866
​Turgut, M., Eliiyi, U., Turgut, O., Öner, E., & Eliiyi, D. (2021). Artificial intelligence approaches to estimate the transport energy demand in Turkey. Arabian Journal for Science and Engineering, 46, 2443–2476. DOI:10.1007/s13369-020-05108-y
​Wijaya and A S. (2014). Climate Change, Global Warming and Global Inequity in Developed and Developing Countries (Analytical Perspective, Issue, Problem and Solution). IOP Conf. Series: Earth and Environmental Science. DOI:10.1088/1755-1315/19/1/012008
​Zafari, & Khan. (2015). Accuracy of ARMA and Bayesian Models in Forecasting Carbon Dioxide Emission from Fossil Fuels in China and Across the Globe. Journal of Environment, 4, 36-40. 
Section
Research Articles

How to Cite

Mathematical modelling and projecting  CO2 by Autoregressive integrated moving average (ARIMA) and Simple exponential smoothing (SES) model for Bangladesh,Bhutan,Nepal and Pakistan. (2025). Journal of Applied and Natural Science, 17(2), 821-829. https://doi.org/10.31018/jans.v17i2.6351