Article Main

Harkrishan Kamboj Sanjeet Kumari Nivedan Bhardwaj

Abstract

Over the last few decades, the extensive application of pesticides has increased agricultural productivity. Neonicotinoid’s (NEOs), a fourth generation of pesticides that arose after organophosphates, pyrethroids, and carbamates, are frequently utilized worldwide. Neonicotinoids have been shown to leach from soil and end up in groundwater or runoff, which badly affects the health of various animals. Among these, imidacloprid (IMI) was the first viable neonicotinoid. IMI is a colorless crystal having the chemical family chloronicotinyl (Neonicotinoid) with a photolytic half-life of 1.2h in deionized water irradiated to UV rays and 126 min in tap water formulated as confidor insecticide. Its great potency at low dosage, low volatility, and high-water solubility (hydrophilic) with low bioaccumulation, nevertheless badly affects the body organs (liver, kidney, gills, etc.) of exposed organisms. IMI widely poses significant threats to aquatic ecosystems, particularly fish, due to its potential toxicity. Understanding the multi-dimensional impacts of IMI toxicity in fish is vital to formulating mitigating plans and suitable pesticide alternatives to safeguard aquatic environments. This review article discusses the long-term effects of IMI on fishes, including disruptions in developmental processes, biochemical alterations, oxidative stress, behavior and alteration in various enzyme activities. Despite numerous studies on IMI toxicity in fish, there is a lack of a comprehensive review that compares different aspects of its toxicity in different fish species. Therefore, this review aims to bridge that gap in current knowledge about IMI toxicity in various fish species and provides a strong basis for future research to safeguard aquatic ecosystems from its harmful effects. In addition, the practical importance of Integrated Pest Management (IPM) and the protective potential of various antioxidants against pesticide toxicity have also been highlighted. 


 

Article Details

Article Details

Keywords

Biochemical, Fish, Imidacloprid, Physiological, Toxicity

References
Abdel-Tawwab, M., El-Saadawy, H. A., El-Belbasi, H.I., Abd El-Hameed, S.A. & Attia, A. A. (2021). Dietary spirulina (Arthrospira platenesis) mitigated the adverse effects of imidacloprid insecticide on the growth performance, haemato-biochemical, antioxidant, and immune responses of Nile tilapia. Comp. Biochem. Physiol Part C: Toxicol. Pharmacol., 247, 109067. https://doi.org/10.1016/j.cbpc.2021.109067
Abd-Eldaim, F. A., Farroh, K. Y., Safina, F. S., Fouad, M. R., Darwish, O. S., Emam, S. S. & Abdel-Halim, K. Y. (2023). Phytotoxic effects of imidacloprid and its nano-form on the cucumber plants under greenhouse condition and their toxicity on HepG2 cell line. Arch. Phytopathol. Plant Prot., 56(19), 1467-1486. https://doi.org/10.1080/03235408.2023.2289218
Abou-Donia, M. B., Goldstein, L. B., Bullman, S., Tu, T., Khan, W. A., Dechkovskaia, A. M. & Abdel-Rahman, A. A. (2008). Imidacloprid induces neurobehavioral deficits and increases expression of glial fibrillary acidic protein in the motor cortex and hippocampus in offspring rats following in utero exposure. J. Toxicol. Environ. Health Part A., 71(2), 119-30. https://doi.org/10.1080/15287390701613140
Adhikari, U. (2022). Insect pest management: mechanical and physical techniques. Rev. Food Agric. (RFNA)., 3(1), 48-53. http://doi.org/10.26480/rfna.01.2022.48.53
Ahmed, M. M., Mohammed, A. T., Farag, M. R., Hassan, M. A., Mawed, S. A., Alagawany, M., Zizzadoro, C., Di, Cerbo. A. & Abdel-Latif, H. M. (2022). Dietary supplementation of Nile tilapia (Oreochromis niloticus) with Panax ginseng essential oil: positive impact on animal health and productive performance, and mitigating effects on atrazine-induced toxicity. Front. Mar. Sci., 9, 920057. https://doi.org/10.3389/fmars.2022.920057
Akbulut, C. & Ertug, N. D. (2019). Histopathological Evaluation of Zebrafish (Danio rerio) Intestinal Tissue After Imidacloprid Exposure. Acta. Aquat. Turc., 16(3), 360-65. https://doi.org/10.22392/actaquatr.688863
Akbulut, C. (2021). Histopathological and apoptotic examination of zebrafish (Danio rerio) gonads exposed to triclosan. Arch. Biol. Sci., 73(4), 465-72. https://doi.org/10.2298/ABS210923040A
Al-Awadhi, R., Abdelrazek, H., Fouad, A., El-Fahla, N. & Tawfik, N. (2024). Protective Role of Dietary Anthocyanidin Against Genotoxicity and Hepatotoxicity Influenced by Imidacloprid in the Nile Tilapia. Egypt. J. Aquat. Biol. Fish., 28(4), 2293-2322. 10.21608/ejabf.2024.376341
Al-Mamun, A. (2017). Pesticide degradations, residues and environmental concerns. In Pesticide Residue in Foods: Sources, Management, and Control (pp 87–102). Springer Cham. https://doi.org/10.1007/978-3-319-52683-6
Almeida, E. C., Passos, L. S., Vieira, C. E. D., Acayaba, R. D., Montagner, C. C., Pinto, E. & Fonseca, A. L. (2021). Can the insecticide Imidacloprid affect the health of the Neotropical freshwater fish Astyanax altiparanae (Teleostei: Characidae)? Environ. Toxicol. Pharmacol., 1, 103634. https://doi.org/10.1016/j.etap.2021.103634
Alvim, T. T. & dos Reis Martinez, C. B. (2019). Genotoxic and oxidative damage in the freshwater teleost Prochilodus lineatus exposed to the insecticide lambda-cyhalothrin and imidacloprid alone and in combination. Mutat. Res. Gen. Tox. En., 842, 85-93. https://doi.org/10.1016/j.mrgentox.2018.11.011
Amenyogbe, E., Huang, J. S., Chen, G. & Wang, Z. (2021). An overview of the pesticides' impacts on fishes and humans. Int. J. Aquat. Biol., 9(1), 55-65. https://doi.org/10.22034/ijab.v9i1.972
Americo-Pinheiro, J. H., da Cruz, C., Aguiar, M. M., Torres, N. H., Ferreira, L. F. & Machado-Neto, J. G. (2019). Sublethal effects of imidacloprid in hematological parameters of tilapia (Oreochromis niloticus). Water Air Soil Pollut., 230, 1-7. https://doi.org/10.1007/s11270-019-4256-0
Angon, P. B., Mondal, S., Jahan, I., Datto, M., Antu, U. B., Ayshi, F. J. & Islam, M. S. (2023). Integrated pest management (IPM) in agriculture and its role in maintaining ecological balance and biodiversity. Adv. Agric., 1, 5546373. https://doi.org/10.1155/2023/5546373
Anonymous (2004). National Road Map for Integrated Pest Management. USDA-CSREES, Washington DC. USA.
Ansoar-Rodriguez, Y., Christofoletti, C. A., Correia, J. E., de Souza, R. B., Moreira-de-Sousa, C., Marcato, A. C., Bueno, O. C., Malaspina, O., Silva-Zacarin, E. C. & Fontanetti, C. S. (2016). Liver alterations in Oreochromis niloticus (Pisces) induced by insecticide imidacloprid: Histopathology and heat shock protein in situ localization. J. Environ. Sci. Health Part B., 51(12), 881-87. https://doi.org/10.1080/03601234.2016.1240559
Ansoar-Rodriguez, Y., Christofoletti, C. A., Marcato, A. C., Correia, J. E., Bueno, O. C., Malaspina, O. & Fontanetti, C. S. (2015). Genotoxic potential of the insecticide imidacloprid in a non-target organism (Oreochromis niloticus-Pisces). J. Environ. Prot., 6(12), 1360-7. 10.4236/jep.2015.612118
Attia, A. A., El-Saadawy, H. A., El-Belbasi, H. I. & Abd El-Hameed, S. A. A. (2021). Ameliorative effect of azolla pinnata on imidacloprid induced hepatorenal toxicity, oxidative stress and immunosuppression in Nile tilapia. J. Anim. Health Prod., 9(s1), 1-6. http://dx.doi.org/10.17582/journal.jahp/2021/9.s1.1.6
Baker, B. P, Green, T. A. & Loker, A. J. (2020). Biological control and integrated pest management in organic and conventional systems. Biol. Control., 140, 104095. https://doi.org/10.1016/j.biocontrol.2019.104095
Benton, E. P., Grant, J. F., Mueller, T. C., Webster, R. J. & Nichols, R. J. (2016). Consequences of imidacloprid treatments for hemlock woolly adelgid on stream water quality in the southern Appalachians. For. Ecol. Manag., 360, 152-58. https://doi.org/10.1016/j.foreco.2015.10.028
Bhardwaj, J. K., Harkrishan & Tyor, A. K. (2020). Sublethal effects of imidacloprid on Haematological and biochemical profile of Freshwater fish, Cyprinus carpio. J. Adv. Zool., 41(1), 75-88.
Bhardwaj, J. K., Kamboj, H. & Tyor, A. K. (2022). The Toxicity of Imidacloprid on Early Embryonic Stages and Growth Rate of Hatchlings of Common Carp, Cyprinus carpio. Toxicol. Int., 29(1), 105-15.
Bhardwaj, J. K. & Tyor, A. K. (2020a). Imidacloprid Induced Alterations in Behavioral and Locomotory Activity of Fingerlings of Common Carp, Cyprinus carpio. Toxicol. Int. (Formerly Indian Journal of Toxicology)., 27(3-4), 158-167.
Bielza, P., Balanza, V., Cifuentes, D. & Mendoza, J. E. (2020). Challenges facing arthropod biological control: identifying traits for genetic improvement of predators in protected crops. Pest Manag. Sci., 76(11), 3517-3526. https://doi.org/10.1002/ps.5857
Blacquiere, T., Smagghe, G., Van Gestel, C. A. & Mommaerts, V. (2012). Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicol., 21, 973-92.
Bortoluzzi, E. C., Rheinheimer, D. S., Goncalves, C. S., Pellegrini, J. B., Maroneze, A. M, Kurz, M. H., Bacar, N. M. & Zanella, R. (2007). Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quim. Nova., 30(8), 1872-76. https://doi.org/10.1590/S0100-40422007000800014 
Cabrera, M., Capparelli, M. V., Ortega-Andrade, H. M., Medina-Villamizar, E. J. & Rico, A. (2024). Effects of the insecticide imidacloprid on aquatic invertebrate communities of the Ecuadorian Amazon. Environ. Pollut., 357, 124459. https://doi.org/10.1016/j.envpol.2024.124459
Casida, J.E. (2018). Neonicotinoids and other insect nicotinic receptor competitive modulators: progress and prospects. Annu. Rev. Entomol., 63(1), 125-44. https://doi.org/10.1146/annurev-ento-020117-043042
Chagnon, M., Kreutzweiser, D., Mitchell, E. A., Morrissey, C. A., Noome, D. A. & Van der Sluijs, J. P. (2015). Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ. Sci. Pollut. Res., 22, 119-34. https://doi.org/10.1007/s11356-014-3277-x
Chia, X. K., Hadibarata, T., Kristanti, R. A., Jusoh, M. N. H., Tan, I. S. & Foo, H. C. Y. (2024). The function of microbial enzymes in breaking down soil contaminated with pesticides: a review. Bioprocess. Biosyst. Eng., 47(5), 597-620. https://doi.org/10.1007/s00449-024-02978-6
Chung, K. T., Chen, L. W., Tseng, H. W. & Wu, C. H. (2023). Neonicotinoid Imidacloprid Affects the Social Behavior of Adult Zebrafish by Damaging Telencephalon Neurons through Oxidation Stress, Inflammation, and Apoptosis. Life., 13(6), 1418. https://doi.org/10.3390/life13061418
Dara, S. K. (2017). Entomopathogenic microorganisms: modes of action and role in IPM. Agriculture and Natural Blogs, University of California, 7p.
Dara, S. K. (2019). The new integrated pest management paradigm for the modern age. J. Inte. Pest Managt., 10(1), 1-9. https://doi.org/10.1093/jipm/pmz010
de Arcaute, C. R., Laborde, M. R., Soloneski, S. & Larramendy, M. L. (2023). Do environmentally relevant concentrations of the neonicotinoid insecticide imidacloprid induce DNA damage and oxidative stress on Cnesterodon decemmaculatus (Jenyns, 1842). Environ. Toxicol. Pharmacol., 100, 104123. https://doi.org/10.1016/j.etap.2023.104123
Desai, B. & Parikh, P. (2014). Behavioural responses to acute exposure of Imidacloprid and Curzate on Labeo rohita (Hamilton, 1822). Int. J. Sci. Res., 2(1), 1-12.
Ding, Z., Yang, Y., Jin, H., Shan, Z., Yu, H., Feng, J., Zhang, X. & Zhou, J. (2004). Acute toxicity and bio-concentration factor of three pesticides on Brachydanio rerio. Ying Yong Sheng tai xue bao the J. Appl. Ecol., 15(5), 888-90.
Dutta, D., Ray, A., Ghosh, B. & Bahadur, M. (2024). Assessment of imidacloprid induced genotoxicity in Pethia conchonius (Rosy barb), a common freshwater fish of India. Drug. Chem. Toxicol., 47(1), 101-14. https://doi.org/10.1080/01480545.2023.2222931
Elbert, A., Haas, M., Springer, B., Thielert, W. & Nauen, R. (2008). Applied aspects of neonicotinoid uses in crop protection. Pest Manag. Sci., 64(11), 1099-1105. https://doi.org/10.1002/ps.1616
Elfikrie, N., Ho, Y. B., Zaidon, S. Z., Juahir, H. & Tan, E. S. (2020). Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia. Sci. Total Environ., 712, 136540. https://doi.org/10.1016/j.scitotenv.2020.136540
El-Garawani, I. M., Khallaf, E. A., Alne-Na-Ei, A. A., Elgendy, R. G., Mersal, G. A. & El-Seedi, H. R. (2021). The role of ascorbic acid combined exposure on Imidacloprid-induced oxidative stress and genotoxicity in Nile tilapia. Sci. Rep., 11(1), 14716. https://doi.org/10.1038/s41598-021-94020-y
El-Garawani, I. M., Khallaf, E. A., Alne-Na-Ei, A. A., Elgendy, R. G., Sobhy, H. M., Khairallah, A., Hathout, H. M., Malhat, F. & Nofal, A. E. (2022). The effect of neonicotinoids exposure on Oreochromis niloticus histopathological alterations and genotoxicity. Bull. Environ. Contam. Toxicol., 109(6), 1001-09. https://doi.org/10.1007/s00128-022-03611-6
Erhunmwunse, N. O., Tongo, I. & Omigie, K. (2023). Embryonic toxicity of Imidacloprid: Impact on hatchability, survivability, swimming speed and cardiac function of catfish, Clarias gariepinus. Ecotoxicol., 32(1), 127-134. https://doi.org/10.1007/s10646-023-02625-y
Erkmen, B., Karasu Benli, A. C., Agus, H. H., Yıldırım, Z., Mert, R. & Erkoc, F. (2017). Impact of sublethal di‐n‐butyl phthalate on the aquaculture fish species Nile tilapia (Oreochromis niloticus): histopathology and oxidative stress assessment. Aquac. Res., 48(2), 675-85. https://doi.org/10.1111/are.12914
Evans, D. H., Piermarini, P. M. & Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev., 85(1), 97-177. https://doi.org/10.1152/physrev.00050.2003
Fouad, M. R. & Abdel-Raheem, S. A. (2024). An overview on the fate and behavior of imidacloprid in agricultural environments. Environ. Sci. Pollut, Res., 31, 61345–61355. https://doi.org/10.1007/s11356-024-35178-6
Fouad, M. R., Abd-Eldaim, F. A., Alsehli, B. R. & Mostafa, A. S. (2024a). Non-competitive and competitive sorption of imidacloprid and KNO3 onto soils and their effects on the germination of wheat plants (Triticum aestivum L.). Glob. Nest J., 26(X), 1-8. https://doi.org/10.30955/gnj.005670
Fowler, S. V., Groenteman, R. & Paynter, Q. (2024). The highs and the lows: a cost benefit analysis of classical weed biocontrol in New Zealand. BioControl., 69(3), 253-267. https://doi.org/10.1007/s10526-023-10225-2
Gajula, S. K., Kanthala, S. K., Narra, M. R. & Vanamala, V. D. (2023). Individual and interactive biochemical profile damages in Labeo rohita (Cyprinidae) by imidacloprid and clothianidin. Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 271, 109689. https://doi.org/10.1016/j.cbpc.2023.109689
Gajula, S. K., Konkala, A. & Narra, M. R. (2025). Physiological and biochemical responses of Labeo rohita to neonicotinoids imidacloprid, clothianidin, and their mixture. Fish Physiol. Biochem., 51(1), 1-13. https://doi.org/10.1007/s10695-024-01412-8
Ge, W., Yan, S., Wang, J., Zhu, L., Chen, A. & Wang, J. (2015). Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). J. Agric. Food Chem., 63(6), 1856-62. https://doi.org/10.1021/jf504895h
Gernhofer, M., Pawert, M., Schramm, M., Muller, E. & Triebskorn, R. (2001). Ultrastructural biomarkers as tools to characterize the health status of fish in contaminated streams. J. Aquat. Ecosyst. Stress Recovery., 8, 241-260. https://doi.org/10.1023/A:1012958804442
Gibbons, D., Morrissey, C. & Mineau, P. (2015). A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ. Sci. Pollut. Res., 22, 103-118. https://doi.org/10.1007/s11356-014-3180-5
Gradila, M. (2013). Chronic aspects of imidacloprid on the fishes from Cyprinidae family. Romanian J. Plant Protec., 6, 11-15.
Guerra, L. J., do Amaral, A. M., de Quadros, V. A., da Luz Fiuza, T., Rosemberg, D. B., Prestes, O. D., Zanella, R., Clasen, B. & Loro, V. L. (2021). Biochemical and behavioral responses in zebrafish exposed to imidacloprid oxidative damage and antioxidant responses. Arch. Environ. Contam. Toxicol., 81(2), 255-64. https://doi.org/10.1007/s00244-021-00865-9
Gunal, A. C., Erkmen, B., Pacal, E., Arslan, P., Yildirim, Z. & Erkoc, F. (2020). Sub-lethal effects of imidacloprid on Nile tilapia (Oreochromis niloticus). Water Air Soil Pollut., 231, 1-10. https://doi.org/10.1007/s11270-019-4366-8
Harkrishan., Saraf, P., Tyor, A. K. & Bhardwaj, J. K. (2020). Effect of Imidacloprid on Histopathological Alterations of Brain, Gills and Eyes in hatchling carp (Cyprinus carpio L.). Toxicol. Int., 27(1-2), 70-78. https://doi.org/10.18311/ti/2020/v27i1&2/25386
Harush, A., Quinn, E., Trostanetsky, A., Rapaport, A., Kostyukovsky, M. & Gottlieb, D. (2021). Integrated pest management for stored grain: potential natural biological control by a parasitoid wasp community. Insects., 12(11), 1038. https://doi.org/10.3390/insects12111038
Hayasaka, D., Korenaga, T., Suzuki, K., Saito, F., Sanchez-Bayo, F. & Goka, K. (2012). Cumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosms. Ecotoxicol. environ. saf., 80, 355-62.
Hayes, L., Fowler, S. V., Paynter, Q., Groenteman, R., Peterson, P., Dodd, S., Bellgard, S. & Dymond, J. (2013). Biocontrol of weeds: achievements to date and future outlook. In: Ecosystem services in New Zealand—conditions and trends. (pp 375-385). Manaaki Whenua Press, Lincoln, New Zealand.
Hayes, T. B. & Hansen, M. (2017). From silent spring to silent night: Agrochemicals and the Anthropocene. Elem Sci Anth., 5, 57. https://doi.org/10.1525/elementa.246
Heimpel, G. E. & Mills, N. J. (2017). Biological control: ecology and applications. Cambridge University Press.
Hong, X., Zhao, X., Tian, X., Li, J. & Zha, J. (2018). Changes of hematological and biochemical parameters revealed genotoxicity and immunotoxicity of neonicotinoids on Chinese rare minnows (Gobiocypris rarus). Environ. Pollut., 233, 862-71. https://doi.org/10.1016/j.envpol.2017.12.036
Hong, Y., Huang, Y., Wu, S., Yang, X., Dong, Y., Xu, D. & Huang, Z. (2020). Effects of imidacloprid on the oxidative stress, detoxification and gut microbiota of Chinese mitten crab, Eriocheir sinensis.  Sci. Total Environ., 729, 138276. https://doi.org/10.1016/j.scitotenv.2020.138276
Huang, Y., Hong, Y., Wu, S., Yang, X., Huang, Q., Dong, Y. & Huang, Z. (2023). Prolonged darkness attenuates imidacloprid toxicity through the brain-gut-microbiome axis in zebrafish, Danio rerio. Sci. Total Environ., 881, 163481. https://doi.org/10.1016/j.scitotenv.2023.163481
Iancu, V., Petre, J., Galaon, T. & Radu, G. L. (2019). Occurrence of neonicotinoid residues in Danube River and tributaries. Rev. Chim., 70(1), 313-318. http://www.revistadechimie.ro
Ilahi, I., Waqas, S. U., Ali, H., Begum, R., Nawaz, H., Bibi, H., Bibi, A., Sardar, F., Bibi, A., Bibi, F. & Bibi, S. (2018). Effect of long-term exposure to sublethal concentration of imidacloprid on some biochemical and haematological parameters of Grass carp and Goldfish. Pak. J. Pharm. Sci., 31(6), 2655-60.
Islam, M. A., Hossen, M. S., Sumon, K. A. & Rahman, M. M. (2019). Acute toxicity of imidacloprid on the developmental stages of common carp Cyprinus carpio. J. Toxicol. Environ. Health Sci., 11, 244-51. https://doi.org/10.1007/s13530-019-0410-8
Ismayil, S. & Joseph, A. (2020). Effect of imidacloprid 17.8% SL on behavioural parameters of the fresh water fish catla catla. Int. Res. J. Mod. Eng. Technol. Sci., 2(5), 1310-19.
Ispir, U. & Ozcan, M. (2021). Imidacloprid toxicity: effects on the clastogenic response of carp (C. carpio) fry. Appl. Ecol. Environ. Res., 19(6), 4349-4355. http://dx.doi.org/10.15666/aeer/1906_43494355
Iturburu, F. G., Zomisch, M., Panzeri, A. M., Crupkin, A. C., Contardo‐Jara, V., Pflugmacher, S. & Menone, M. L. (2017). Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Environ. Toxicol. Chem., 36(3), 699-708. https://doi.org/10.1002/etc.3574
Kamboj, H., Bhardwaj, J. K., Rani, J., Kumar, S. & Kumar, S. (2024). Genotoxicity and histopathological alterations induced by imidacloprid in freshwater fish Cyprinus carpio. Indian J. Environ. Prot., 44(12), 1089-1096.
Kapoor, U., Srivastava, M. K. & Srivastava, L. P. (2011). Toxicological impact of technical imidacloprid on ovarian morphology, hormones and antioxidant enzymes in female rats. Food Chem. Toxicol., 49(12), 3086-89. https://doi.org/10.1016/j.fct.2011.09.009
Kochetkov, N., Smorodinskaya, S., Vatlin, A., Nikiforov-Nikishin, D., Nikiforov-Nikishin, A., Danilenko, V. & Marsova, M. (2023). Ability of Lactobacillus brevis 47f to Alleviate the Toxic Effects of Imidacloprid Low Concentration on the Histological Parameters and Cytokine Profile of Zebrafish (Danio rerio). Int. J. Mol. Sci., 24(15), 12290. https://doi.org/10.3390/ijms241512290
Kumar, V., Sharma, N., Sharma, P., Pasrija, R., Kaur, K., Umesh, M. & Thazeem, B. (2023). Toxicity analysis of endocrine disrupting pesticides on non-target organisms: A critical analysis on toxicity mechanisms. Toxicol. Appl. Pharmacol., 474, 116623. https://doi.org/10.1016/j.taap.2023.116623
Kurikose, S., Verma, P. & Sawarkar, D. B. (2022). Histopathological effect of the insecticide imidacloprid on the kidney of Clarias gariepinus (Burchell, 1822) (Siluriformes: Clariidae). Int. J. Adv. Res. Dev., 8(4), 1-5. www.multidisciplinaryjournal.net
Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. (2016). An international database for pesticide risk assessments and management. Human and ecological risk assessment: Hum. Ecol. Risk Assess., 22(4), 1050-64. https://doi.org/10.1080/10807039.2015.1133242
Luo, T., Wang, X. & Jin, Y. (2021). Low concentrations of imidacloprid exposure induced gut toxicity in adult zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 241, 108972. https://doi.org/10.1016/j.cbpc.2020.108972
Mahmoud, H. K., Farag, M. R., Reda, F. M., Alagawany, M. & Abdel-Latif, H. M. (2022). Dietary supplementation with Moringa oleifera leaves extract reduces the impacts of sub-lethal fipronil in Nile tilapia, Oreochromis niloticus. Sci. Rep., 12(1), 21748. https://doi.org/10.1038/s41598-022-25611-6
Mandal, R. N. & Bera, P. (2025). Macrophytes used as multifaceted benefits including feeding, bioremediation, and symbiosis in freshwater aquaculture—A review. Rev. Aquac., 17(1), e12983. https://doi.org/10.1111/raq.12983
Mani, M., Natarajan, N., Hegde, R.D. & Tej, M.K. (2022). Host Plant Resistance to Insect Pests in Horticultural Crops. In: Mani, M. (eds) Trends in Horticultural Entomology. (pp 335-386). Springer, Singapore. https://doi.org/10.1007/978-981-19-0343-411
Masia, A., Campo, J., Vazquez-Roig, P., Blasco, C. & Pico, Y. (2013). Screening of currently used pesticides in water, sediments and biota of the Guadalquivir River Basin (Spain). J. hazard. Mater., 263, 95-104. https://doi.org/10.1016/j.jhazmat.2013.09.035
Mehrandish, R., Rahimian, A. & Shahriary, A. (2019). Heavy metals detoxification: A review of herbal compounds for chelation therapy in heavy metals toxicity. J. Herb Pharmacol., 8(2), 69-77. https://doi.org/10.15171/jhp.2019.12
Metcalfe, C. D., Helm, P., Paterson, G., Kaltenecker, G., Murray, C., Nowierski, M. & Sultana, T. (2019). Pesticides related to land use in watersheds of the Great Lakes basin. Sci. Total Environ., 648, 681-92. https://doi.org/10.1016/j.scitotenv.2018.08.169
Miao, Z., Miao, Z., Liu, M. & Xu, S. (2022). Melatonin ameliorates imidacloprid-induced intestinal injury by negatively regulating the PGN/P38MAPK pathway in the common carp (Cyprinus carpio). Fish Shellfish Immunol., 131, 1063-1074. https://doi.org/10.1016/j.fsi.2022.11.018
Miao, Z., Miao, Z., Wang, S., Shi, X. & Xu, S. (2021). Quercetin antagonizes imidacloprid-induced mitochondrial apoptosis through PTEN/PI3K/AKT in grass carp hepatocytes. Environ. Pollut., 290, 118036. https://doi.org/10.1016/j.envpol.2021.118036
Moghaddasi, B. (2017). Lethal Concentration (LC50 96h) of the Insecticide Confidor (Imidacloprid) on the Juveniles of the Grass Carp (Ctenopharyngodon idella). J. Animal Biol., 9(3), 27-34.
Mohr, S., Berghahn, R., Schmiediche, R., Hubner, V., Loth, S., Feibicke, M., Mailahn, W. & Wogram, J. (2012). Macroinvertebrate community response to repeated short-term pulses of the insecticide imidacloprid. Aquat. Toxicol., 110, 25-36. https://doi.org/10.1016/j.aquatox.2011.11.016
Moniem, A., Hassan, S., El-Ela, F. I. A. & Abdel-Aziz, A. M. (2019). Investigating the potential protective effects of natural product quercetin against imidacloprid-induced biochemical toxicity and DNA damage in adult rats. Toxicol. Rep., 6, 727-735. https://doi.org/10.1016/j.toxrep.2019.07.007
Morrissey, C. A., Mineau, P., Devries, J. H., Sanchez-Bayo, F., Liess, M., Cavallaro, M. C. & Liber, K. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a Review. Environ. Int., 74, 291-303. https://doi.org/10.1016/j.envint.2014.10.024
Muazzam, B., Munawar, K., Khan, I. A., Jahan, S., Iqbal, M., Asi, M. R., Farooqi, A., Nazli, A., Hussain, I. & Zafar, M. I. (2019). Stress response and toxicity studies on zebrafish exposed to endosulfan and imidacloprid present in water. J. Water Supply: Res. Technol. Aqua., 68(8), 718-30. https://doi.org/10.2166/aqua.2019.077
Naiel, M. A., Shehata, A. M., Negm, S. S., Abd El‐Hack, M. E., Amer, M. S., Khafaga, A. F., Bin‐Jumah, M. & Allam, A. A. (2020). The new aspects of using some safe feed additives on alleviated imidacloprid toxicity in farmed fish: a review. Rev. Aquac., 12(4), 2250-67. https://doi.org/10.1111/raq.12432
Nayak, P. & Solanki, H. (2021). Pesticides and Indian agriculture—a review. Int. J. Res. Granthaalayah., 9(5), 250-263. 10.7821/granthaalayah.v9.i5.2021.3930
Osazee, E, N., Pajiah, T. J. & Ogodo, V. J. (2024). Short-term imidacloprid exposure in juvenile fish triggers physiological and biochemical responses. Research Square. https://doi.org/10.21203/rs.3.rs-4809545/v1
Ozdemir, S., Altun, S. & Arslan, H. (2018). Imidacloprid exposure cause the histopathological changes, activation of TNF-α, iNOS, 8-OHdG biomarkers, and alteration of caspase 3, iNOS, CYP1A, MT1 gene expression levels in common carp (Cyprinus carpio L.). Toxicol. Rep., 5, 125-33. https://doi.org/10.1016/j.toxrep.2017.12.019
Patel, B. H., Upadhyay, A. N. & Parikh, P. R. (2016). Histological changes in the tissues of Oreochromis mossambicus and Labeo rohita on exposure to imidacloprid and curzate. Int. J. Nat. Soc. Sci., 4(5), 149-60.
Patil, V. K. & David, M. (2008). Behaviour and respiratory dysfunction as an index of malathion toxicity in the freshwater fish, Labeo rohita (Hamilton). Turkish J. Fish. Aquat. Sci., 8(2), 233-37.
Petkovic Didovic, M., Kowalkowski, T. & Broznic, D. (2022). Emerging contaminant imidacloprid in Mediterranean soils: the risk of accumulation is greater than the risk of leaching. Toxics., 10(7), 358. https://doi.org/10.3390/toxics10070358
Pradhan, S. S., Gowda, G. B., Adak, T., Guru-Pirasanna-Pandi, G., Patil, N. B., Annamalai, M. & Rath, P. C. (2022). Pesticides occurrence in water sources and decontamination techniques. In Pesticides-Updates on Toxicity, Efficacy and Risk Assessment. Intech Open. 10.5772/intechopen.103812
Qadir, S. & Iqbal, F. (2016). Effect of sublethal concentration of imidacloprid on the histology of heart, liver and kidney in Labeo rohita. Pak. J. Pharma. Sci., 29(6), 2033-38.
Qadir, S., Latif, A., Ali, M. & Iqbal, F. (2014). Effects of imidacloprid on the hematological and serum biochemical profile of Labeo rohita. Pakistan J. Zool., 46(4), 1085-90.
Qadir, S., Xiwei, C., Wei, W., Feng, F., Sultan, S., Kareem, K. & Iqbal, F. (2017). Short-and long-term exposure to imidacloprid disturbs the elemental composition and free amino acid profile in muscles of Labeo rohita. Comp. Clin. Path., 26, 1339-46. https://doi.org/10.1007/s00580-017-2538-8
Queiroz, L. G., do Prado, C. C., da Silva, D. C., Gomes, L. E., Marassi, R. J, Almeida, E. C., Pinto, E., da Silva, F. T. & de Paiva, T. C. (2022). Ecological risk of imidacloprid on the Brazilian non-target freshwater organisms Chironomus sancticaroli and Poecilia reticulata. Environ. Monit. Assess. 194(10), 751. https://doi.org/10.1007/s10661-022-10418-9
Rahman, A. N. A., Abdel Mageed, M. A., Assayed, M. E. M., Gharib, H. S. A. R., Nasr, M. A., Elshopakey, G. E. & Ahmed, S. A. (2023). Imidacloprid induced growth, hematological, neuro-behavior, anti-oxidant, economic, genetic, and histopathological alterations in Clarias gariepinus: Alleviative role of dietary Hyphaene thebaica. Aquac., 564, 739058. https://doi.org/10.1016/j.aquaculture.2022.739058
Rahman, A. N., Mansour, D. A, Abd El-Rahman, G. I., Elseddawy, N. M., Zaglool, A. W., Khamis. T., Mahmoud, S. F. & Mahboub, H. H. (2022). Imidacloprid toxicity in Clarias gariepinus: Protective role of dietary Hyphaene thebaica against biochemical and histopathological disruption, oxidative stress, immune genes expressions, and Aeromonas sobria infection. Aquac., 555, 738170. https://doi.org/10.1016/j.aquaculture.2022.738170
Rajmohan, K. S., Chandrasekaran, R. & Varjani, S. (2020). A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian J. microbiol., 60(2), 125-138. https://doi.org/10.1007/s12088-019-00841-x
Ramirez-Coronel, A. A., Jasim, S. A., Zadeh, A. H. A., Jawad, M. A., Al-Awsi, G. R. L., Adhab, A. H. & Norbakhsh, M. (2023). Dietary mitigated the adverse effects of Imidacloprid on the growth performance, antioxidant, and immune responses of common carp. Ann. Anim. Sci., 23(3), 845-857. https://doi.org/10.2478/aoas-2023-0003
Razaa, W., Tripathib, N., Mahatoc, D. & Mahtod, H. (2023). Effects of imidacloprid on biochemical and hematological parameters in Cirrhinus mrigala. Biospectra., 18(2), 35-40. https://doi.org/10.5281/zenodo.11909533
Razzaq, A., Zafar, M. M., Ali, A., Li, P., Qadir, F., Zahra, L. T. & Gong, W. (2023). Biotechnology and solutions: Insect-Pest-Resistance management for improvement and development of Bt cotton (Gossypium hirsutum L.). Plants., 12(23), 4071.  https://doi.org/10.3390/plants12234071
Rigosi, E. & O Carroll, D. C. (2021). Acute application of imidacloprid alters the sensitivity of direction selective motion detecting neurons in an insect pollinator. Front. Physiol., 12, 682489. https://doi.org/10.3389/fphys.2021.682489
Rohani, M. F. (2023). Pesticides toxicity in fish: Histopathological and hemato-biochemical aspects–A review. Emerg. Contam., 9(3), 100234. https://doi.org/10.1016/j.emcon.2023.100234
Saaristo, M., Brodin, T., Balshine, S., Bertram, M. G., Brooks, B. W., Ehlman, S. M., McCallum, E. S., Sih, A., Sundin, J., Wong, B. B. & Arnold, K. E. (2018). Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proc. R. Soc. B., 285(1885), 20181297. https://doi.org/10.1098/rspb.2018.1297
Sabra, F. S. & Mehana, E. S. E. D. (2015). Pesticides toxicity in fish with particular reference to insecticides. Asian J. Agri. Food. Sci., 3(1). 40-60. www.ajouronline.com
Sajad, M., Shabir, S., Singh, S. K., Bhardwaj, R., Alsanie, W. F., Alamri, A. S., Alhomrani, M., Alsharif, A., Vamanu, E. & Singh, M. P. (2024). Role of nutraceutical against exposure to pesticide residues: power of bioactive compounds. Front Nutr., 11, 1342881. https://doi.org/10.3389/fnut.2024.1342881
Salim, M., Gokce, A., Naqqash, M. N. & Bakhsh, A. (2016). An overview of biological control of economically important lepidopteron pests with parasitoids. J Entomol Zool., 4(1), 354-62.
Sanchez-Bayo, F. & Hyne, R. V. (2014). Detection and analysis of neonicotinoids in river waters–development of a passive sampler for three commonly used insecticides. Chemosphere., 99, 143-51. https://doi.org/10.1016/j.chemosphere.2013.10.051
Sanchez-Bayo, F. (2011). Impacts of agricultural pesticides on terrestrial ecosystems. Ecological impacts of toxic chemicals., 2011, 63-87.
Shahzadi, I., Yaseen, S., Khizar, F., Farhan, M., Haider, M. I., Ismat, N. & Hussain, M. (2024). Impact of Zinc Phosphide on Hematology, Behaviour and Proximate Composition of Oreochromis niloticus: Zinc Phosphide on Composition of Oreochromis niloticus. Futur. Biotechnol., 4(04), 39-45. https://doi.org/10.54393/fbt.v4i04.148
Shan, Y., Yan, S., Hong, X., Zha, J. & Qin J. (2020). Effect of imidacloprid on the behaviour, antioxidant system, multixenobiotic resistance, and histopathology of Asian freshwater clams (Corbicula fluminea). Aqua. Toxicol., 218, 105333. https://doi.org/10.1016/j.aquatox.2019.105333
Shao, B., Wang, M., Chen, A., Zhang, C., Lin, L., Zhang, Z. & Chen, A. (2020). Protective effect of caffeic acid phenethyl ester against imidacloprid-induced hepatotoxicity by attenuating oxidative stress, endoplasmic reticulum stress, inflammation and apoptosis. Pestic. Biochem., 164, 122-129. https://doi.org/10.1016/j.pestbp.2020.01.001
Sharma, K., Sharma, P., Dhiman, S. K., Chadha, P. & Saini, H. S. (2022). Biochemical, genotoxic, histological, and ultrastructural effects on liver and gills of freshwater fish Channa punctatus exposed to textile industry intermediate 2 ABS. Chemosphere., 287, 132103. https://doi.org/10.1016/j.chemosphere.2021.132103
Sood, P. (2024). Pesticides usage and its toxic effects-A review. Indian J. Entomol., 86(1), 339-347. 10.55446/IJE.2023.505
Sousa, J. C., Ribeiro, A. R., Barbosa, M. O., Ribeiro, C., Tiritan, M. E., Pereira, M. F. & Silva, A. M. (2019). Monitoring of the 17 EU Watch List contaminants of emerging concern in the Ave and the Sousa Rivers. Sci. Total Environ., 649, 1083-95. https://doi.org/10.1016/j.scitotenv.2018.08.309
Starner, K. & Goh, K. S. (2012). Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011. Bull. Environ. Contam. Toxicol., 88, 316-21. https://doi.org/10.1007/s00128-011-0515-5
Stern, V. M., Smith, R., Van den Bosch, R. & Hagen, K. (1959). The integration of chemical and biological control of the spotted alfalfa aphid: the integrated control concept. Hilgardia, 29(2), 81-101. https://doi.org/10.3733/hilg.v29n02p081
Struger, J., Grabuski, J., Cagampan, S., Sverko, E., McGoldrick, D. & Marvin, C. H. (2017). Factors influencing the occurrence and distribution of neonicotinoid insecticides in surface waters of southern Ontario, Canada. Chemosphere., 169, 516-23. https://doi.org/10.1016/j.chemosphere.2016.11.036
Subaramaniyam, U., Allimuthu, R. S., Vappu, S., Ramalingam, D., Balan, R., Paital, B. & Sahoo, D. K. (2023). Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Front. Physiol., 14, 1217666. https://doi.org/10.3389/fphys.2023.1217666
Suman, B., Nilanjan, C. H., Lopamudra, G., Sayan, M. & Ganguly, P. M. (2017). Modulation of blood profile of juvenile Cyprinus carpio exposed to imidacloprid. Int. J. Life Sci., 5, 627-30.
Sumon, K. A., Ritika, A. K., Peeters, E. T., Rashid, H., Bosma, R. H., Rahman, M. S., Fatema, M. K. & Van den Brink, P. J. (2018). Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms. Environ. Pollut., 236, 432-41. https://doi.org/10.1016/j.envpol.2018.01.102
Suzuki, H., Makino, W., Takahashi, S. & Urabe, J. (2024). Assessment of toxic effects of imidacloprid on freshwater zooplankton: An experimental test for 27 species. Sci. Total Environ., 927, 172378. https://doi.org/10.1016/j.scitotenv.2024.172378
Tanda, A. S. (2024). Significance and importance of biological control in insect pest management. In: Advances In Biological Control Pest Management Technology. IK International Pvt Ltd.
Temiz, O. & Dayangac, A. (2024). Toxic Effects of Imidacloprid, Copper Sulfate, and Their Combinations on Biomolecular and Oxidative/Antioxidant Biomarkers in the Tissues of Oreochromis niloticus. Biol. Trace Elem. Res., 203, 1-13. https://doi.org/10.1007/s12011-024-04404-0
Tisler, T., Jemec, A., Mozetic, B. & Trebse, P. (2009). Hazard identification of imidacloprid to aquatic environment. Chemosphere., 76(7), 907-14. https://doi.org/10.1016/j.chemosphere.2009.05.002
Tokriya, R. K. & Billore, K. (2024). Hematological Changes Induced by Imidacloprid in Clarias Batrachus (Magur) Int. J. of Adv. Res., 12(1), 546-55. https://doi.org/10.9734/ajob/2024/v20i8430
Tomlin, C. D. S. (1997). The Pesticide Manual. The British Crop Protection Council, UK.
Tyor, A. K. & Harkrishan, K. (2016). Effects of imidacloprid on viability and hatchability of embryos of the common carp (Cyprinus carpio L.). Int. J. Fish. Aquat. Stud., 4(4), 385-89.
Verebova, V. and Stanicova, J. (2022) The Effect of Neonicotinoid Insecticides on the Structure and Stability of Bio-Macromolecules. In: Insecticides - Impact and Benefits of Its Use for Humanity. IntechOpen London, United Kingdom. DOI: 10.5772/intechopen.100049
Vieira, C. E, Perez, M. R., Acayaba, R. D., Raimundo, C. C. & dos Reis Martinez, C. B. (2018). DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere, 195, 125-34. https://doi.org/10.1016/j.chemosphere.2017.12.077
Vijayan, A. S. & George Thomas, G. T. (2018). Study on the effect of Imidacloprid on the biochemical parameters of fresh water fish, Aplocheilus lineatus. J. Basic Appl. Zool., 29(1), 89-92.
Vishal Rajput, V. R., Singh, S. K., Arpita, A., Kirti, K. & Abhishek, A. (2012). Comparative toxicity of Butachlor, Imidacloprid and Sodium fluoride on protein profile of the walking cat fish Clarias batrachus. J. Appl. Pharm. Sci., 2(6), 121-24. 10.7324/JAPS.2012.2629
Wang, T., Zhong, M., Lu, M., Xu, D., Xue, Y., Huang, J., Blaney, L. & Yu, G. (2021). Occurrence, spatiotemporal distribution, and risk assessment of current-use pesticides in surface water: A case study near Taihu Lake, China. Sci. Total Environ., 782, 146826. https://doi.org/10.1016/j.scitotenv.2021.146826
Warne, M. S. J. & Reichelt-Brushett, A. (2023). Pesticides and biocides. In Marine Pollution–Monitoring, Management and Mitigation (pp. 155-184). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-10127-47
Wijerathna-Yapa, A. & Pathirana, R. (2022). Sustainable agro-food systems for addressing climate change and food security. Agriculture., 12(10), 1554. https://doi.org/10.3390/agriculture12101554
Witeska, M., Kondera, E. & Bojarski, B. (2023). Hematological and hematopoietic analysis in fish toxicology—a review. Animals., 13(16), 2625. https://doi.org/10.3390/ani13162625
Wu, S., Li, X., Liu, X., Yang, G., An, X., Wang, Q. & Wang, Y. (2018). Joint toxic effects of triazophos and imidacloprid on zebrafish (Danio rerio). Environ. Pollut., 235, 470-81. https://doi.org/10.1016/j.envpol.2017.12.120
Xia, X., Xia, X., Huo, W., Dong, H., Zhang, L. & Chang, Z. (2016). Toxic effects of imidacloprid on adult loach (Misgurnus anguillicaudatus). Environ. Toxicol. Pharmacol., 45, 132-9. https://doi.org/10.1016/j.etap.2016.05.030
Yadav, V., Ahmad, S. & Zahra, K. (2020). Imidacloprid toxicity and its attenuation by aqueous extract of Moringa oleifera leaf in zebra fish, Danio rerio. Int. J. Curr. Pharm. Res., 12(2), 32-38. https://doi.org/10.22159/ijcpr.2020v12i2.37483
Yamanaka, T. (2007). Mating disruption or mass trapping? Numerical simulation analysis of a control strategy for lepidopteran pests. Pop. Ecol., 49, 75-86. https://doi.org/10.1007/s10144-006-0018-0
Yao, K. S., Li, D., Lei, H. J., Van den Brink, P. J. & Ying, G. G. (2021). Imidacloprid treatments induces cyanobacteria blooms in freshwater communities under sub-tropical conditions. Aqua. Toxicol., 240, 105992. https://doi.org/10.1016/j.aquatox.2021.105992
Zhang, C., Tian, D., Yi, X., Zhang, T., Ruan, J., Wu, R., Chen, C., Huang, M. & Ying, G. (2019). Occurrence, distribution and seasonal variation of five neonicotinoid insecticides in surface water and sediment of the Pearl Rivers, South China. Chemosphere., 217, 437-46. https://doi.org/10.1016/j.chemosphere.2018.11.024
Zhou, W., Arcot, Y., Medina, R. F., Bernal, J., Cisneros-Zevallos, L. & Akbulut, M. E. (2024). Integrated pest management: an update on the sustainability approach to crop protection. ACS omega., 9(40), 41130-41147. https://doi.org/10.1021/acsomega.4c06628
Section
Research Articles

How to Cite

Imidacloprid (IMI) toxicity in fishes: A review. (2025). Journal of Applied and Natural Science, 17(1), 435-449. https://doi.org/10.31018/jans.v17i1.6346