Article Main

Rana Suhail Al-Juwary Muntaha Mahmood Al-Kattan

Abstract

This study investigated the effects of Fragaria X ananassa polyphenols, Prunus amigdalus derived omega-3, and Omega3 and Vitamin E on Triton-induced fatty liver disease in 100 male rabbits divided into 10 groups. Group 1 to Group 10 as follows: control (1), rabbits given Triton (2), rabbits given polyphenols extracted from strawberry(3), rabbits given polyphenols extracted from strawberry with Triton(4), rabbits given Omega3 extracted from almond(5), rabbits given omega-3 extracted from almond with Triton(6), rabbits given polyphenols extracted from strawberry and omega3 extracted from almond(7), rabbits given polyphenols extracted from strawberry and omega-3 extracted from almond with Triton(8), rabbits given omega3, Vit.E (9) and rabbits given omega3, Vit.E with Triton (10) Treatments were administered daily for four months. Results showed a significant reduction in Hemoglobin Hb (6.42±0.16), Red Blood Cells RBCs(3.52±0.08), Packed Cell Volume PCV (2.81±0.08)  and Total Antioxidant Capacity TAC (3.62±0.13) in the Triton group compared to other treated groups. Conversely, treated groups showed improved hematological parameters levels, but White Blood Cells WBCs (14.77±0.04) increased in Triton group with a probability (P≤0.01) .


 

Article Details

Article Details

Keywords

Fragaria X ananassa , Hepatic steatosis, Packed Cell Volume (PCV), Prunus amigdalus , Red Blood Cells (RBCs ), Total Antioxidant Capacity (TAC) , Triton, White Blood Cells (WBCs)

References
Aksu, D. S., Didin, M. & Kayikci, F. (2012). The protective role of polyphenols on blood cells in rats exposed to lead. Revista Română de Medicină de Laborator Vol, 20(3/4),233-243.
Al-Ani, Z. S. & Al-Kattan, M. (2017). Effect of Cinnamon Boiled Extract on Blood Picture and Leptin Hormone of Experimentally-Induced Diabetic White New Zealand Female Rabbits. Rafidain Journal of Science, 26(2), 53-62.
Al-Daody, A.C. (1998) . Chemical Study on Some Iraqi Plants . PhD Thesis, Mosul University, PP.87.
Al-Jaghfi, Z. N. H.(2022). Chromatographic separation of some natural compounds of the seeds of the Iraqi cumin plant Cuminum cyminuan L. and a study of their inhibitory effect on two types of bacteria. Master's thesis, Mosul University,PP.33-38.
Al-Lahibi, A. H. Gh. (2022). Qualitative and quantitative separation of a number of active substances in Cyperus rotundus L. tubers and a study of their antibacterial effect on some types of bacteria. Master's thesis, Mosul University.PP.44-50
Al-Mashhadini, T. & Al-Hayali, H. L. (2020). Biochemical and physiological study of the effect of sesame seeds on quail males exposed to thermal stress. Indian J Public Health Res Dev, 11(4), 1077-1083.
Antar, S. H. & Al-Wakaa,A.H.A. (2017). Statistical analysis of agricultural experiments using SAS program. Central Press, Diyala University, 1st ed., , Diyala, Iraq. pp. 469
Asrani, S. K., Devarbhavi,H. ,Eaton,J. & Kamath,P.S. (2019). Burden of liver diseases in the world. Journal of Hepatology, 70(1), 151-171. https://doi.org/10.1016/j.jhep.2018.09.014
Behbahani, M., Shanehsazzadeh,M. & Hessami,M.J. (2011). Optimization of callus and cell suspension cultures of Barringtonia racemosa (Lecythidaceae family) for lycopene production. Scientia Agricola, 68(1): 69-76. https://doi.org/10.1590/S0103-90162011000100011
Chaachouay, N. & Zidane, L. (2024). Plant-derived natural products: a source for drug discovery and development. Drugs and Drug Candidates, 3(1), 184-207. https://doi.org/10.3390/ddc3010011
Djuricic, I. & Calder, P. C. (2021). Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients, 13(7), 2421. https://doi.org/10.3390/nu13072421
El-Aila, H. J. (2009). Interaction of nonionic surfactant Triton-X-100 with ionic surfactants. Journal of Dispersion Science and Technology, 30(9), 1277-1280. https://doi.org/10.1080/01932690902735207
Forman, H. J. & Zhang, H.( 2021). Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 20(9), 689-709. https://doi.org/10.1038/s41573-021-00233-1
Galli, F., Bonomini, M., Bartolini, D., Zatini, L., Reboldi, G., Marcantonini, G., Gentile,G.,Sirolli, V.& Di Pietro, N. (2022).Vitamin E(alpha-tocopherol) metabolism and nutrition in chronic kidney disease. Antioxidants, 11(5),989. https://doi.org/10.3390/antiox11050989
Ghazanfar, H., Javed,N. , Qasim, A.G. S., Zacharia,G.S., Ghazanfar, A., Jyala,A. ,Shehi,A. & PatelH.(2024). Metabolic Dysfunction-Associated Steatohepatitis and Progression to Hepatocellular Carcinoma: A Literature Review. Cancers, 16(6), 1214. https://doi.org/10.3390/cancers16061214
Gonzalez, A., Huerta-Salgado, C., Orozco-Aguilar, J., Aguirre, F., Tacchi, F. & Simon ,F. (2020). Role of oxidative stress in hepatic and extrahepatic dysfunctions during nonalcoholic fatty liver disease (NAFLD). Oxid Med Cell Longev.; 1617805. https://doi.org/10.1155/2020/1617805
Han, S. K., Baik, S.K. & Kim,M.Y. (2022). Nonalcoholic fatty liver disease: Definition and subtypes. Clinical and Molecular Hepatology, 29(Suppl), S5. https://doi.org/10.3350%2Fcmh.2022.0424
Harborne, J.B. (1998) .Photochemical methods a guide to modern techniques of plant analysis. 5th edition, Chapman and Hall, London, pp.21-72 .
Heeren, J. & Scheja, L. (2021). Metabolic-associated fatty liver disease and lipoprotein metabolism. Molecular Metabolism, 50, 101238. https://doi.org/10.1016/j.molmet.2021.101238
Jeong, S. W. (2020). Nonalcoholic fatty liver disease: a drug revolution is coming. Diabetes & Metabolism Journal, 44(5), 640. https://doi.org/10.4093/dmj.2020.0115
Kadhim,A.A.,Al-kattan, M.M. & Abou, A. M.(2023).Analyzing and Examining Smoking Effects and Oxidative Stress Markers in Seminal Plasma in Iraqi Infertility Men. Journal of Bionatura :Vol.8 NO.2:1-11. http://dx.doi.org/10.21931/RB/CSS/2023.08.02.58
Khan, S. U. & Khan ,M. U. (2022). Molecular developments in cell models of fatty liver disease. DYSONA-Life Science, 3(1), 16-29. https://doi.org/10.30493/dls.2022.325915
Li, Y., Yu ,Y., Yang, L. & Wang, R. (2023). Insights into the Role of Oxidative Stress in Hepatocellular Carcinoma Development. Frontiers in Bioscience-Landmark, 28(11), 286. https://doi.org/10.31083/j.fbl2811286
Othón-Díaz, E. D., Fimbres-García, J. O., Flores-Sauceda, M., Silva-Espinoza, B. A., López-Martínez, L. X., Bernal-Mercado, A. T. & Ayala-Zavala, J. F. (2023). Antioxidants in oak (Quercus sp.): Potential application to reduce oxidative rancidity in foods. Antioxidants, 12(4), 861. https://doi.org/10.3390/antiox12040861
Poli, A., Schmitt, C., Moulouel, B., Mirmiran, A., Puy, H., Lefèbvre, T. & Gouya, L. (2021). Iron, heme synthesis and erythropoietic porphyrias: a complex interplay. Metabolites, 11(12), 798. https://doi.org/10.3390/metabo11120798
Ramachandran, A. & Jaeschke, H. (2018). Oxidative stress and acute hepatic injury. Current Opinion in Toxicology, 7, 17-21. https://doi.org/10.1016/j.cotox.2017.10.011
Ricci, A., Di Betto, G., Bergamini, E., Buzzetti, E., Corradini, E. & Ventura, P. (2022). Iron metabolism in the disorders of heme biosynthesis. Metabolites, 12(9), 819. https://doi.org/10.3390/metabo12090819
Robert, K. M., Daryl, K. G., Peter, A. M. & Victor, W. R. (2003). Harper’s illustrated Biochemistry twenty sixth edition. 2003 by the McGraw-Hill companies Inc. Printed in London, 12-21.
Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Alomary, M. N., Alshabrmi,F.M., Palai,S., Deb,P.K. & Devi, R. (2022). Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism (s) of action. Frontiers in Pharmacology, 13, 806470. https://doi.org/10.3389/fphar.2022.806470
Shakoor, H., Feehan, J., Apostolopoulos, V., Platat, C., Al Dhaheri, A. S., Ali, H. I., Ismail, L.C., Bosevski,M. & Stojanovska, L. (2021). Immunomodulatory effects of dietary polyphenols. Nutrients, 13(3), 728. https://doi.org/10.3390/nu13030728
Teng, M. L., Ng, C. H., Huang, D. Q., Chan, K. E., Tan, D. J., Lim, W. H., Tan,E. & Muthiah, M. D. (2022). Global incidence and prevalence of nonalcoholic fatty liver disease. Clinical and molecular hepatology, 29(Suppl), S32. https://doi.org/10.3350%2Fcmh.2022.0365
Tijjani, H., Adegunloye, A. P., Uba, H., Joel, E. B. & Olatunde, A. (2020). Antioxidant activities of aqueous and ethyl acetate fractions of Daucus carota L. seed against triton X-100 induced oxidative stress in mice. Scientific African, 8, e00429. https://doi.org/10.1016/j.sciaf.2020.e00429
Verwer, C. M., van Amerongen,G., van den Bos, R. & C. F. Hendriksen,C. F. (2009). Handling effects on body weight and behaviour of group-housed male rabbits in a laboratory setting. Applied Animal Behaviour Science, 117(1-2), 93-102. https://doi.org/10.1016/j.applanim.2008.12.004
Villarroel-Vicente, C., Gutiérrez-Palomo, S., Ferri, J., Cortes, D. & Cabedo, N. (2021). Natural products and analogs as preventive agents for metabolic syndrome via peroxisome proliferator-activated receptors: An overview. European Journal of Medicinal Chemistry, 221, 113535. https://doi.org/10.1016/j.ejmech.2021.113535
Wang, L., Li, S., Yao, Y., Yin, W. & Ye, T. (2021). The role of natural products in the prevention and treatment of pulmonary fibrosis: a review. Food & function, 12(3), 990-1007. https://doi.org/10.1039/D0FO03001E
Wang, X., Liang, G., Zhou, Y., Ni, B. & Zhou, X. (2024). Ameliorative effect and mechanism of ursodeoxycholic acid on hydrogen peroxide-induced hepatocyte injury. Scientific Reports, 14(1), 4446. https://doi.org/10.1038/s41598-024-55043-3
Wilson, S. , Gullan, R. & Hocker,E. (1972). Studies of the stability of 18 chemical constituent’s serum. Clin. Chem., 18(2): 1498-1503. https://doi.org/10.1093/clinchem/18.12.1498Xia, G., Xu, Y., Zhang, C., Li, M., Li, H., and Chen, C. (2024). High levels of serum hypersensitive C-reactive protein are associated with nonalcoholic fatty liver disease in non-obese people: a cross-sectional study. European Journal of Medical Research, 29(1), 496. https://doi.org/10.1186/s40001-024-02065-2
Xia, G., Xu, Y., Zhang, C., Li, M., Li, H. & Chen, C. (2024). High levels of serum hypersensitive C-reactive protein are associated with non-alcoholic fatty liver disease in non-obese people: a cross-sectional study. European Journal of Medical Research, 29(1), 496. https://doi.org/10.1186/s40001-024-02065-2
Zhang, H., Niu, Y., Gu, H., Lu, S., Su, W., Lin, N.,Li, X., Yang, Z., Qin, L. & Su, Q. (2019). The association between white blood cell subtypes and prevalence and incidence of nonalcoholic fatty liver disease. European Journal of Inflammation, 17, 2058739219834477. https://doi.org/10.1177/2058739219834477
Zidane, S. S. R. (2023). Isolation and identification of a number of natural products of the flowers of the Iraqi karjat plant and their impact on the growth of two types of pathogenic bacteria. Master's thesis, Mosul University, Iraq,PP.55-60.
Section
Research Articles

How to Cite

Effect of isolated active compounds of  Fragaria X ananassa and Prunus amigdalus on induced hepatic steatosis in male albino rabbits. (2025). Journal of Applied and Natural Science, 17(1), 398-406. https://doi.org/10.31018/jans.v17i1.6274