Article Main

Asmaa Suri Mohammed Aseel Abdulhussein Obaid Enas Mohammed Ali Hussein Nibras Abdulmohsen Akosh Mustafa Salah Hassan Huda Abdulrahman Khalaf Fayhaa Masir Hamza Faris Nawfal Abdulrahman

Abstract

Vitamin D3 has poor solubility in water, leading to a low dissolution profile, which presents significant biopharmaceutical challenges. To overcome these issues, liposome-conjugation techniques have been researched in recent years. Liposomes can enhance the solubility, stability, and bioavailability of vitamin D3, improving its therapeutic effectiveness. The study aimed to prepare and evaluate the particles for vitamin D3 conjugated with phospholipids, focusing on optimizing their formulation, assessing stability, and enhancing bioavailability. Vitamin D3 conjugated with phospholipids was prepared using the solvent evaporation method in a 1:1 ratio. The conjugation greatly improved the physical properties of the vitamin D3 in its conjugation and dispersion in a significant way; then the conjugate was characterized by using x-ray diffraction (XRD), fourier transforms infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), optical microscope (Op.M)toconfirm the formation of a complex between vitamin D3 and phospholipids. The polydispersity index and zeta potential of the prepared vitamin D3-phosphatidylcholine conjugate were measured as 74.96 and −56.93 mV, respectively, confirming its colloidal stability. These values indicated uniform particle size distribution and strong electrostatic repulsion, preventing aggregation. Additionally, the solubility in water was studied and compared with pure vitamin D3, demonstrating improved solubility characteristics of the conjugate. This work suggests using liposomal formulations of vitamin D3-phosphatidylcholine conjugates as an alternative to conventional vitamin D3 tablets. These formulations can potentially enhance drug absorption and bioavailability, allowing for dose reduction and minimizing side effects. Additionally, improved bioavailability may lead to better patient compliance and therapeutic outcomes, offering a more efficient approach to vitamin D3 supplementation.


 

Article Details

Article Details

Keywords

Conjugated, Liposomes, Phosphatidylcholine, Solubility, Vitamin D3

References
Asmaa, S.M., Eman, W.A., Nebras, A.A., Ruaa, M.A., Huda, A.K., Fyhaa, M.H., & Ali, E. M. ( 2023). Evaluation of a New Spectrophotometric Method of Amlodipine in Pharmaceutical Formulation by Molecular Spectrum Using Iron (ІІ) Iron (ІІІ). Iraqi Journal of Science and Technology, 13(1) 1-9.
Aygun, H. (2020). Vitamin D can prevent COVID-19 infection-induced multiple organ damage. Naunyn-schmiedeberg's Archives of Pharmacology, 393(7), 1157-1160. doi: 10.1007/s00210-020-01911-4. Epub 2020 May 25. PMID: 32451597; PMCID: PMC7246956.
Beg, S., Raza, K., Kumar, R., Chadha, R., Katare, O. P., & Singh, B. (2016). Improved intestinal lymphatic drug targeting via phospholipid complex-loaded nanolipospheres of rosuvastatin calcium. RSC Advances, 6(10), 8173-8187.
Bikle, D. D. (2014). Vitamin D metabolism, mechanism of action, and clinical applications. Chemistry &Biology, 21(3), 319-329. doi: 10.1016/j.chembiol. 12.016. Epub 2014 Feb 13. PMID: 24529992; PMCID: PMC3968073.
Bilezikian, J. P., Formenti, A. M., Adler, R. A., Binkley, N., Bouillon, R., Lazaretti-Castro, M., ... & Giustina, A. (2021). Vitamin D: dosing, levels, form, and route of administration: does one approach fit all? Reviews in Endocrine and Metabolic Disorders, 22(4), 1201-1218. doi: 10.1007/s11154-021-09693-7. Epub 2021 Dec 23. PMID: 34940947; PMCID: PMC8696970.
Danaei, M. R. M. M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., ... &Mozafari, M. R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 57. doi: 10.3390/pharmaceutics10020057. PMID: 29783687; PMCID: PMC6027495.
Dhiman, N., Awasthi, R., Sharma, B., Kharkwal, H., & Kulkarni, G. T. (2021). Lipid nanoparticles as carriers for bioactive delivery. Frontiers in Chemistry, 9, 580118. doi: 10.3389/fchem.2021.580118. PMID: 33981670; PMCID: PMC8107723.
Ge, L., He, X., Zhang, Y., Zhang, Y., Chai, F., Jiang, L., ... & Zheng, C. (2018). A dabigatran etexilate phospholipid complex nanoemulsion system for further oral bioavailability by reducing drug-leakage in the gastrointestinal tract. Nanomedicine: Nanotechnology, Biology and Medicine, 14(4), 1455-1464.‏
Glowka, E., Stasiak, J., & Lulek, J. (2019). Drug delivery systems for vitamin D supplementation and therapy. Pharmaceutics, 11(7), 347. doi: 10.3390/pharmaceutics11070347. PMID: 31323777; PMCID: PMC6680748.
Guo, B., Liu, H., Li, Y., Zhao, J., Yang, D., Wang, X., & Zhang, T. (2014). Application of phospholipid complex technique to improve the dissolution and pharmacokinetic of probucol by solvent-evaporation and co-grinding methods. International Journal of Pharmaceutics, 474(1-2), 50-56. doi: 10.1016/j.ijpharm.2014.08.006. Epub 2014 Aug 7. PMID: 25108049.
Gupta, R., Behera, C., Paudwal, G., Rawat, N., Baldi, A., & Gupta, P. N. (2019). Recent advances in formulation strategies for efficient delivery of vitamin D. AAPS Pharmscitech, 20, 1-12. doi: 10.1208/s12249-018-1231-9. PMID: 30560516.
Hakimpour, S., Govahi, A., Eghbali, S., Shabani, R., Mehdizadeh, R., Ajdary, M., & Mehdizadeh, M. (2023). The Effect of Vitamin D3 Supplemented with PhytoSolve on Genes Involved in Implantation in an NMRI Mice Model of Polycystic Ovary Syndrome: An Experimental Study. JBRA Assisted Reproduction, 27(4), 694. doi: 10.5935/1518-0557.20230064. Epub ahead of print. PMID: 37962973; PMCID: PMC10718550.
Kapoor, B., Gupta, R., Singh, S. K., Gulati, M., & Singh, S. (2018). Prodrugs, phospholipids and vesicular delivery-An effective triumvirate of pharmacosomes. Advances in Colloid and Interface Science, 253, 35-65. doi: 10.1016/j.cis.2018.01.003. Epub 2018 Feb 7. PMID: 29454464.
Khan, J., Alexander, A., Saraf, S., & Saraf, S. (2013). Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. Journal of controlled Release, 168(1), 50-60. doi: 10.1016/j.jconrel.2013.02.025. Epub 2013 Mar 6. PMID: 23474031.
Lavelli, V., D’Incecco, P., & Pellegrino, L. (2021). Vitamin D incorporation in foods: Formulation strategies, stability, and bioaccessibility as affected by the food matrix. Foods, 10(9), 1989. doi: 10.3390/foods10091989. PMID: 34574096; PMCID: PMC8467460.
Mohammadi, M., Pezeshki, A., Abbasi, M. M., Ghanbarzadeh, B., &Hamishehkar, H. (2017). Vitamin D3-loaded nanostructured lipid carriers as a potential approach for fortifying food beverages; in vitro and in vivo evaluation. Advanced Pharmaceutical Bulletin, 7(1), 61. doi: 10.15171/apb.2017.008. Epub 2017 Apr 13. PMID: 28507938; PMCID: PMC5426735.
Mukherjee, S., Ray, S., & Thakur, R. S. (2009). Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences, 71(4), 349. doi: 10.4103/0250-474X.57282. PMID: 20502539; PMCID: PMC2865805.
Qin, L., Niu, Y., Wang, Y., & Chen, X. (2018). Combination of phospholipid complex and submicron emulsion techniques for improving oral bioavailability and therapeutic efficacy of water-insoluble drug. Molecular Pharmaceutics, 15(3), 1238-1247. doi: 10.1021/acs.mo lpharmaceut.7b01061. Epub 2018 Feb 12. PMID: 29412674.
Semalty, M., Badoni, P., Singh, D., &Semalty, A. (2014). Modulation of solubilityand dissolution of furosemide by preparation of phospholipid complex. Drug Development and Therapeutics, 5(2), 172. DOI:10.4103/WKMP-0090.139641.

Section
Research Articles

How to Cite

Preparation of a new liquid dosage from Vitamin D3 by using pospholipid conjugate. (2025). Journal of Applied and Natural Science, 17(2), 592-599. https://doi.org/10.31018/jans.v17i2.6267