Article Main

Mellvan Prakash Dhamodhar Prakash Renju Raju Gowrishankar B Vignesh Dinesh

Abstract

Microalgae are a good source of antioxidants and natural bioactive compounds utilized in the pharmaceutical and food industries.The present study aimed to explore Ochromonas gloeopara as an alternate microalgal biomass for synthesising proteins and carotenoids.The freshwater samples of microalgae collected from a lake had microalgae and macroalgae that feed on microalgae. This sample was further subcultured in BG-11 media with 20nM phosphate to inhibit the growth of predator species. The isolated microalgae were identified as Ochromonas cf. gloeopara by 18S rRNA sequencing. A comparison of growth characteristics and protein production by the isolate with Chlorella vulgaris  indicated that O. gloeopara had a uniform growth rate and a better protein production of 33.83mg/g. Carotenoid production was found to be 424.64 µg/g and 263.87 µg/g dry biomass by O. gloeopara and C. vulgaris, respectively. Thin Layer Chromatography analysis revealed three types of carotenoids: β-carotene, astaxanthin mono and diesters produced by C. vulgaris, whereas Ochromonas produced only β-carotene. Physical parameter studies revealed that the optimum growth condition for C. vulgaris was at 1% salinity and pH 7, but it had a better carotenoid production at 0.5% salinity. O. gloeopara had better growth and production of carotenoids at 0% salinity and pH 7. These carotenoids and proteins can be used in various food and pharma industries.


 

Article Details

Article Details

Keywords

β-carotene, Carotenoid, Chlorella vulgaris, Ochromonas cf. gloeopara, Proteins

References
Adedoyin, A. E., & Schmidt, S. (2023). Demonstration of the Antioxidant Potential of Three Newly Isolated Carotenoid-Producing Microscopic Algae from KwaZulu-Natal (South Africa). Journal of Pure and Applied Microbiology, 17(2), 1163–1178. https://doi.org/10.22207/JPAM.17.2.46
Asadi, P., Rad, H. A., & Qaderi, F. (2020). Lipid and biodiesel production by cultivation isolated strain Chlorella sorokiniana pa.91 and Chlorella vulgaris in dairy wastewater treatment plant effluents. Journal of Environmental Health Science and Engineering, 18(2), 573–585. https://doi.org/10.1007/s40201-020-00483-y
Aslam, A., Fazal, T., Zaman, Q. U., Shan, A., Rehman, F., Iqbal, J., Rashid, N., & Rehman, M. S. U. (2019). Biorefinery of microalgae for nonfuel products. In Microalgae Cultivation for Biofuels Production (pp. 197–209). Elsevier. https://doi.org/10.1016/B978-0-12-817536-1.00013-8
Cheng, D., Li, D., Yuan, Y., Zhou, L., Li, X., Wu, T., Wang, L., Zhao, Q., Wei, W., & Sun, Y. (2017). Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnology for Biofuels, 10(1), 75. https://doi.org/10.1186/s13068-017-0753-9
Chia, S. R., Chew, K. W., Zaid, H. F. M., Chu, D.-T., Tao, Y., & Show, P. L. (2019). Microalgal Protein Extraction From Chlorella vulgaris FSP-E Using Triphasic Partitioning Technique With Sonication. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00396
Christwardana, M., & Hadiyanto, H. (2017). The Effects of Audible Sound for Enhancing the Growth Rate of Microalgae Haematococcus pluvialis in Vegetative Stage. HAYATI Journal of Biosciences, 24(3), 149–155. https://doi.org/10.1016/j.hjb.2017.08.009
Dalal, N., & Siddiqui, S. (2025). Tailoring the Biomass, Nutritional Value, Shelf Life and Food Use of Microgreens. In Recent Trends and Applications of Leguminous Microgreens as Functional Foods (pp. 541–578). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-75678-8_25
Deamici, K. M., Figueiredo, D., Guerra, I., Letras, P., & Pereira, H. (2025). Global market and future trends of microalgae-based products. In Algal Bioreactors (pp. 11–25). Elsevier. https://doi.org/10.1016/B978-0-443-14058-7.00048-8
Diaz, C. J., Douglas, K. J., Kang, K., Kolarik, A. L., Malinovski, R., Torres-Tiji, Y., Molino, J. V., Badary, A., & Mayfield, S. P. (2023). Developing algae as a sustainable food source. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.1029841
Dolganyuk, V., Belova, D., Babich, O., Prosekov, A., Ivanova, S., Katserov, D., Patyukov, N., & Sukhikh, S. (2020). Microalgae: A Promising Source of Valuable Bioproducts. Biomolecules, 10(8), 1153. https://doi.org/10.3390/biom10081153
El-Naggar, N. E. A., Hussein, M. H., Shaaban-Dessuuki, S. A., & Dalal, S. R. (2020). Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-59945-w
Gokbulut, C. (2024). Cosmetic and Dermatological Application of Seaweed: Skincare Therapy-Cosmeceuticals. In Seaweeds and Seaweed-Derived Compounds (pp. 309–365). Springer International Publishing. https://doi.org/10.1007/978-3-031-65529-6_11
Gordon-Strachan, G. M., Parker, S. Y., Harewood, H. C., Méndez-Lázaro, P. A., Saketa, S. T., Parchment, K. F., Walawender, M., Abdulkadri, A. O., Beggs, P. J., Buss, D. F., Chodak, R. J., Dasgupta, S., De Santis, O., Guthrie-Dixon, N. G., Hassan, S., Kennard, H., Maharaj, S. B., Marshall, K. G., McFarlane, S. R., … Romanello, M. (2025). The 2024 small island developing states report of the Lancet Countdown on health and climate change. The Lancet Global Health, 13(1), e146–e166. https://doi.org/10.1016/S2214-109X(24)00421-2
Hamid, I., Wanjari, R. N., Abass, Z., & Abubakr, A. (2025). Algal Biotechnology for the Production of Food. In Food Security, Nutrition and Sustainability Through Aquaculture Technologies (pp. 345–361). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-75830-0_19
Hamidi, M., Kozani, P. S., Kozani, P. S., Pierre, G., Michaud, P., & Delattre, C. (2019). Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications? Marine Drugs, 18(1), 28. https://doi.org/10.3390/md18010028
Howe, P., Fitzpatrick, M., & Maxwell, D. (2025). Five levels of famine prevention: towards a framework for the twenty‐first century and beyond. Disasters, 49(1). https://doi.org/10.1111/disa.12668
Jo, S.-W., Do, J.-M., Kang, N. S., Park, J. M., Lee, J. H., Kim, H. S., Hong, J. W., & Yoon, H.-S. (2020). Isolation, Identification, and Biochemical Characteristics of a Cold-Tolerant Chlorella vulgaris KNUA007 Isolated from King George Island, Antarctica. Journal of Marine Science and Engineering, 8(11), 935. https://doi.org/10.3390/jmse8110935
Khanashyam, A. C., Mundanat, A. S., Sajith Babu, K., Thorakkattu, P., Krishnan, R., Abdullah, S., Bekhit, A. E. A., McClements, D. J., Santivarangkna, C., & Nirmal, N. P. (2025). Emerging alternative food protein sources: production process, quality parameters, and safety point of view. Critical Reviews in Biotechnology, 45(1), 1–22. https://doi.org/10.1080/07388551.2024.2341902
Lie, A. A. Y., Liu, Z., Terrado, R., Tatters, A. O., Heidelberg, K. B., & Caron, D. A. (2017a). Effect of light and prey availability on gene expression of the mixotrophic chrysophyte, Ochromonas sp. BMC Genomics, 18(1), 163. https://doi.org/10.1186/s12864-017-3549-1
Lie, A. A. Y., Liu, Z., Terrado, R., Tatters, A. O., Heidelberg, K. B., & Caron, D. A. (2017b). Effect of light and prey availability on gene expression of the mixotrophic chrysophyte, Ochromonas sp. BMC Genomics, 18(1), 163. https://doi.org/10.1186/s12864-017-3549-1
Lie, A. A. Y., Liu, Z., Terrado, R., Tatters, A. O., Heidelberg, K. B., & Caron, D. A. (2018). A tale of two mixotrophic chrysophytes: Insights into the metabolisms of two Ochromonas species (Chrysophyceae) through a comparison of gene expression. PLOS ONE, 13(2), e0192439. https://doi.org/10.1371/journal.pone.0192439
Ma, M., Gong, Y., & Hu, Q. (2018). Identification and feeding characteristics of the mixotrophic flagellate Poterioochromonas malhamensis, a microalgal predator isolated from outdoor massive Chlorella culture. Algal Research, 29, 142–153. https://doi.org/10.1016/j.algal.2017.11.024
Mangena, P. (2024). Harnessing the Potential of Macroalgae Biomass as Alternative Feedstocks to Grain Legumes: A Step Towards Food Security. In Biomass Valorization (pp. 239–260). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-8557-5_11
Mapelli-Brahm, P., Barba, F. J., Remize, F., Garcia, C., Fessard, A., Mousavi Khaneghah, A., Sant’Ana, A. S., Lorenzo, J. M., Montesano, D., & Meléndez-Martínez, A. J. (2020). The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends in Food Science & Technology, 99, 389–401. https://doi.org/10.1016/j.tifs.2020.03.013
Meléndez-Martínez, A. J., Mandić, A. I., Bantis, F., Böhm, V., Borge, G. I. A., Brnčić, M., Bysted, A., Cano, M. P., Dias, M. G., Elgersma, A., Fikselová, M., García-Alonso, J., Giuffrida, D., Gonçalves, V. S. S., Hornero-Méndez, D., Kljak, K., Lavelli, V., Manganaris, G. A., Mapelli-Brahm, P., … O’Brien, N. (2022). A comprehensive review on carotenoids in foods and feeds: status quo , applications, patents, and research needs. Critical Reviews in Food Science and Nutrition, 62(8), 1999–2049. https://doi.org/10.1080/10408398.2020.1867959
Mendes, M., Navalho, S., Ferreira, A., Paulino, C., Figueiredo, D., Silva, D., Gao, F., Gama, F., Bombo, G., Jacinto, R., Aveiro, S., Schulze, P., Gonçalves, A. T., Pereira, H., Gouveia, L., Patarra, R., Abreu, M. H., Silva, J., Navalho, J., … Speranza, L. (2022). Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods, 11(13), 1871. https://doi.org/10.3390/foods11131871
Minyuk, G. S., & Solovchenko, A. E. (2018). Express Analysis of Microalgal Secondary Carotenoids by TLC and UV-Vis Spectroscopy (pp. 73–95). https://doi.org/10.1007/978-1-4939-8742-9_4
Novoveská, L., Ross, M. E., Stanley, M. S., Pradelles, R., Wasiolek, V., & Sassi, J.-F. (2019). Microalgal Carotenoids: A Review of Production, Current Markets, Regulations, and Future Direction. Marine Drugs, 17(11), 640. https://doi.org/10.3390/md17110640
Pashkow, F. J., Watumull, D. G., & Campbell, C. L. (2008). Astaxanthin: A Novel Potential Treatment for Oxidative Stress and Inflammation in Cardiovascular Disease. The American Journal of Cardiology, 101(10), S58–S68. https://doi.org/10.1016/j.amjcard.2008.02.010
Psachoulia, P., Chatzidoukas, C., & Samaras, P. (2024). Study of Chlorella sorokiniana Cultivation in an Airlift Tubular Photobioreactor Using Anaerobic Digestate Substrate. Water, 16(3), 485. https://doi.org/10.3390/w16030485
Rumin, J., Gonçalves de Oliveira Junior, R., Bérard, J.-B., & Picot, L. (2021). Improving Microalgae Research and Marketing in the European Atlantic Area: Analysis of Major Gaps and Barriers Limiting Sector Development. Marine Drugs, 19(6), 319. https://doi.org/10.3390/md19060319
Sathasivam, R., & Ki, J.-S. (2018). A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries. Marine Drugs, 16(1), 26. https://doi.org/10.3390/md16010026
Schüler, L., Greque de Morais, E., Trovão, M., Machado, A., Carvalho, B., Carneiro, M., Maia, I., Soares, M., Duarte, P., Barros, A., Pereira, H., Silva, J., & Varela, J. (2020). Isolation and Characterization of Novel Chlorella Vulgaris Mutants With Low Chlorophyll and Improved Protein Contents for Food Applications. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00469
Scoglio, G. D., Jackson, H. O., & Purton, S. (2024). The commercial potential of Aphanizomenon flos-aquae, a nitrogen-fixing edible cyanobacterium. Journal of Applied Phycology, 36(4), 1593–1617. https://doi.org/10.1007/s10811-024-03214-0
Senesse, P., Touvier, M., Kesse, E., Faivre, J., & Boutron-Ruault, M.-C. (2005). Tobacco Use and Associations of β-Carotene and Vitamin Intakes with Colorectal Adenoma Risk. The Journal of Nutrition, 135(10), 2468–2472. https://doi.org/10.1093/jn/135.10.2468
Sharma, C., Kamle, M., & Kumar, P. (2024). Microbial-Derived Carotenoids and Their Health Benefits. Microbiol. Res, 15, 1670–1689. https://doi.org/10.3390/microbiolres
Singh, D. P., Khattar, J. S., Rajput, A., Chaudhary, R., & Singh, R. (2019a). High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PLOS ONE,
14(9), e0221930. https://doi.org/10.1371/journal.pone.0221930
Singh, D. P., Khattar, J. S., Rajput, A., Chaudhary, R., & Singh, R. (2019b). High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PLoS ONE, 14(9). https://doi.org/10.1371/journal.pone.0221930
Ślusarczyk, J., Adamska, E., & Czerwik-Marcinkowska, J. (2021). Fungi and Algae as Sources of Medicinal and Other Biologically Active Compounds: A Review.
Nutrients, 13(9), 3178. https://doi.org/10.3390/nu13093178
Střížek, A., Lukeš, M., Hrouzek, P., Mylenko, M., Lukavský, J., Nedbalová, L., & Přibyl, P. (2024). Alternative production of fucoxanthin and PUFAs using Chlorochromonas danica and Hibberdia magna, unicellular chrysophytes with different trophic modes. Algal Research, 82, 103597. https://doi.org/10.1016/j.algal.2024.103597
Toda, N., Murakami, H., Kanbara, A., Kuroda, A., & Hirota, R. (2021). Phosphite Reduces the Predation Impact of Poterioochromonas malhamensis on Cyanobacterial Culture. Plants, 10(7), 1361. https://doi.org/10.3390/plants10071361
Wang, J., Hu, X., Chen, J., Wang, T., Huang, X., & Chen, G. (2022). The Extraction of β-Carotene from Microalgae for Testing Their Health Benefits. Foods, 11(4), 502. https://doi.org/10.3390/foods11040502
Wang, Y., Tibbetts, S., & McGinn, P. (2021). Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods, 10(12), 3002. https://doi.org/10.3390/foods10123002
Yadav, S., Bansal, S., Chaithra, M. L., & Sibi, G. (2020). Assessment of optimal growth conditions for specific carotenoids production by chlorella vulgaris. Journal of Applied and Natural Science, 12(4), 550–555. https://doi.org/10.31018/jans.v12i4.2399
Section
Research Articles

How to Cite

A study on Ochromonas sp. as an alternate microalgal biomass for the synthesis of proteins and carotenoids. (2025). Journal of Applied and Natural Science, 17(1), 293-301. https://doi.org/10.31018/jans.v17i1.6258