Article Main

Sanchari Bhattacharyya https://orcid.org/0000-0002-7771-1877 Sagar Acharya Poulami Chatterjee Niladri Prasad Mishra

Abstract

Oxidative stress has been identified as a contributing factor in the onset of several illnesses and disorders. This has led to the adoption of multiple studies in recent years aimed at improving clinical outcomes by increasing antioxidant levels. The plant studied, Amaranthus spinosus, has been used in tribal cultures worldwide for its ethnomedicinal properties. Here, the present investigation characterises the phenolic acids and flavonoids in the methanolic extracts of A. spinosus from the leaf (ASLE), stem (ASSE), and root (ASRE) using High-performance liquid chromatography (HPLC). Additionally, a comparative evaluation of their antioxidant activity was conducted both in vitro and in vivo.  ASLE exhibited high levels of rutin (12.93±0.06 μg/mg) and syringic acid (8.84±0.09 μg/mg), while ASSE was rich in gallic acid (3.39±0.03 μg/mg) and protocatechuic acid (2.05±0.004 μg/mg). In vitro antioxidant assays demonstrated comparable radical scavenging activities among the extracts, despite differences in phytochemical profiles. Also, in vivo experiments on thioacetamide-induced oxidative stress in mice (Mus musculus) demonstrated considerable antioxidant capabilities among all extracts. Administration of extracts restored catalase and SOD enzyme activity, elevated glutathione levels, and decreased lipid peroxidation in liver homogenates, indicating their therapeutic value. Therefore, the presence of important phenolic acids (e.g., syringic and chlorogenic acids) and flavonoids (e.g., rutin and quercetin) might explain the observed effectiveness. However, there were no significant variations in in vivo antioxidant activity amongst the extracts. This study highlights the therapeutic potential of A. spinosus, which supports its traditional use in combating oxidative stress. However, further research is necessary to identify the specific phytochemical combinations responsible for its antioxidant properties and their underlying mechanisms.


 

Article Details

Article Details

Keywords

Antioxidant, Flavonoids, Oxidative stress, Phenolic acid, Plant extracts

References
Abazari, M. F., Nasiri, N., Karizi, S. Z., Nejati, F., Haghi-Aminjan, H., Norouzi, S., Piri, P., Estakhr, L., Faradonbeh, D. R., Kohandani, M., Daliri, K., Sanadgol, N. & Askari, H. (2021). An Updated Review of Various Medicinal Applications of p-Coumaric Acid: From Antioxidative and Anti-Inflammatory Properties to Effects on Cell Cycle and Proliferation. Mini-Reviews in Medicinal Chemistry, 21(15), 2187–2201. https: doi.org/10.2174/138955752166621 0114163024
Abir, M. H. & Ahmad, M. (2021). Phytochemical, Nutritional and Pharmacological Potentialities of Amaranthus spinosus Linn. : A review. Archives of Ecotoxicology, 3(2), 49–59. https://doi.org/10.36547/ae.2021.3.2.49-59
Adeyi, O. E., Somade, O. T., Ajayi, B. O., James, A. S., Adeyi, A. O., Olayemi, Z. M. & Tella, N. B. (2023). Syringic acid demonstrates better anti-apoptotic, anti-inflammatory and antioxidative effects than ascorbic acid via maintenance of the endogenous antioxidants and downregulation of pro-inflammatory and apoptotic markers in DMN-induced hepatotoxicity in rats. Biochemistry and Biophysics Reports, 33, 101428. https://doi.org/10.1016/j.bbrep.2023.101428
Aebi, H. (1984). Catalase in vitro. Methods in enzymology, Academic press, 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
Ahmed, O. M., Elkomy, M. H., Fahim, H. I., Ashour, M. B., Naguib, I. A., Alghamdi, B. S., Mahmoud, H. U. R. & Ahmed, N. A. (2022). Rutin and Quercetin Counter Doxorubicin-Induced Liver Toxicity in Wistar Rats via Their Modulatory Effects on Inflammation, Oxidative Stress, Apoptosis, and Nrf2. Oxidative Medicine and Cellular Longevity, 1, 2710607. https://doi.org/10.1155/2022/2710607
Alam, Md. N., Bristi, N. J. & Rafiquzzaman, Md. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152. https://doi.org/10.1016/j.jsps.2012.05.002
Arika, W., Kibiti, C. M., Njagi, J. M. & Ngugi, M. P. (2019). In Vitro Antioxidant Properties of Dichloromethanolic Leaf Extract of Gnidia glauca (Fresen) as a Promising Antiobesity Drug. Journal of Evidence-Based Integrative Medicine, 24, 2515690X1988325. https://doi.org/10.1177/2515690X19883258
Bang, J. H., Lee, K. J., Jeong, W. T., Han, S., Jo, I. H., Choi, S. H., Cho, H., Hyun, T. K., Sung, J., Lee, J., So, Y.-S. & Chung, J.-W. (2021). Antioxidant Activity and Phytochemical Content of Nine Amaranthus Species. Agronomy, 11(6), 1032. https://doi.org/10.3390/agronom y11061032
Benzie, I. F. F. & Strain, J. J. (1999). Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15–27. https://doi.org/10.1016/S0076-6879(99)99005-5
Bhat, A. H., Dar, K. B., Anees, S., Zargar, M. A., Masood, A., Sofi, M. A. & Ganie, S. A. (2015). Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomedicine and Pharmacotherapy, 74, 101–110. https://doi.org/10.1016/j.biopha.2015.07.025
Chandrashekhar, K. (2019). Review on Tanduliyaka (Amaranthus spinosus L) - A Weed, A Vegetable and A Medicinal Plant. International Journal of Ayurvedic Medicine, 9(4), 231–238. https://doi.org/10.47552/ijam.v9i4.1169
Chaves, N., Santiago, A. & Alías, J. C. (2020). Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants, 9(1), 76. https://doi.org/10.3390/antiox9010076
Chilakapati, J., Korrapati, M. C., Hill, R. A., Warbritton, A., Latendresse, J. R. & Mehendale, H. M. (2007). Toxicokinetics and toxicity of thioacetamide sulfoxide: a metabolite of thioacetamide. Toxicology, 230(2–3), 105–116. https://doi.org/10.1016/j.tox.2006.11.050
Cohen, G., Dembiec, D. & Marcx-S, J. (1970). Measurement of Catalase Activity in Tissue Extracts. Analytical biochemistry, 34(1), 30-38.
Das, A. J., Das, M. K., Singh, S. P., Saikia, P. P., Singh, N., Islam, J. & Deka, S. C. (2022). Synthesis of salicylic acid phenylethyl ester (SAPE) and its implication in immunomodulatory and anticancer roles. Scientific Reports, 12(1), 8735. https://doi.org/10.1038/s41598-022-12524-7
Ekinci, D., Şentürk, M. & Küfrevioğlu, Ö. İ. (2011). Salicylic acid derivatives: synthesis, features and usage as therapeutic tools. Expert opinion on therapeutic patents, 21(12), 1831-1841. https://doi.org/10.1517/1354 3776.2011.636354
Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of biochemistry and biophysics, 82(1), 70-77.
Fauziah, P. N., Maskoen, A. M., Yuliati, T. & Widiarsih, E. (2018). Optimized steps in determination of malondialdehyde (MDA) standards on diagnostic of lipid peroxidation. Padjadjaran Journal of Dentistry, 30(2), 136. https://doi.org/10.24198/pjd.vol30no2.18329
Gandhi, P., Samarth, R. M. & Peter, K. (2021). Bioactive Compounds of Amaranth (Genus Amaranthus). Bioactive Compounds in Underutilized Vegetables and Legumes, Reference Series in Phytochemistry. Springer, Cham, 39–74. https://doi.org/10.1007/978-3-030-57415-4_3
Ganjare, A. & Raut, N. (2019). Nutritional and medicinal potential of Amaranthus spinosus. Journal of Pharmacognosy and Phytochemistry, 8(3), 3149-3156.Ghorbani, A. (2017). Mechanisms of antidiabetic effects of flavonoid rutin. Biomedicine and Pharmacotherapy, 96, 305–312. https://doi.org/10.1016/j.biopha.2017.10.001
Gomis-Tena, J., Brown, B. M., Cano, J., Trenor, B., Yang, P. C., Saiz, J. & Romero, L. (2020). When does the IC50 accurately assess the blocking potency of a drug?. Journal of chemical information and modeling, 60(3), 1779-1790. https://doi.org/10.1021/acs.jcim.9b01085
Gossell-Williams, M., Simon, O. & West, M. (2006). The past and present use of plants for medicines. West Indian Medical Journal, 55(4), 217-218. https://doi.org/10.1590/S0043-31442006000400002
Gul, R., Jan, S. U., Faridullah, S., Sherani, S. & Jahan, N. (2017). Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan. The Scientific World Journal, 2017, 5873648. https://doi.org/10.1155/2017/5873648
Gulcin, İ. & Alwasel, S. H. (2023). DPPH Radical Scavenging Assay. Processes, 11(8), 2248. https://doi.org/10.3390/pr11082248Hardy, K. (2021). Paleomedicine and the Evolutionary Context of Medicinal Plant Use. Revista Brasileira de Farmacognosia, 31(1), 1–15. https://doi.org/10.1007/s43450-020-00107-4
Hosseini, A., Mehri, S., Aminifard, T., Ghasemzadeh Rahbardar, M., Nouripor, S., Khajavi Rad, A., Jafarian, A. & Hosseinzadeh, H. (2024). Renoprotective effect of thymoquinone against rhabdomyolysis-induced acute kidney injury in the rat model. Iranian Journal of Basic Medical Sciences, 27(5), 552–559. https://doi.org/10.22038/IJBMS.2023.72797.15838
Kahkeshani, N., Farzaei, F., Fotouhi, M., Alavi, S. S., Bahramsoltani, R., Naseri, R., Momtaz, S., Abbasabadi, Z., Rahimi, R., Farzaei, M. H. & Bishayee, A. (2019). Pharmacological effects of gallic acid in health and disease: A mechanistic review. Iranian Journal of Basic Medical Sciences, 22(3), 225–237. https://doi.org/10.22038/ijbms.2019.32806.7897
Kakkar, P., Das, B. & Viswanathan, P. N. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry and Biophysics, 21(2), 130–132.
Karamać, M., Gai, F., Longato, E., Meineri, G., Janiak, M. A., Amarowicz, R. & Peiretti, P. G. (2019). Antioxidant Activity and Phenolic Composition of Amaranth (Amaranthus caudatus) during Plant Growth. Antioxidants, 8(6), 173. https://doi.org/10.3390/antiox8060173
Koval’skii, I. V., Krasnyuk, I. I., Krasnyuk, I. I., Nikulina, O. I., Belyatskaya, A. V., Kharitonov, Yu. Ya., Feldman, N. B. & Lutsenko, S. V. (2014). Mechanisms of Rutin Pharmacological Action (Review). Pharmaceutical Chemistry Journal, 48(2), 73–76. https://doi.org/10.1007/s11094-014-1050-6
Kumar Shah, R. & Yadav, R. (2015). Qualitative phytochemical analysis and estimation of total phenols and flavonoids in leaf extract of Ssarcochlamys pulcherrima, Global Journal of Bio-science and Biotechnology. 4(1),81-84.
Kumar, R. P., Shammy, J., Gupta, N. & Rana, R. (2014). An Inside Review Of Amaranthus spinosus Linn: A Potential Medicinal Plant Of India. International Journal of Research, 4, 643–653.
Kumaran, A. & Karunakaran, R.J. (2007). In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT - Food Science and Technology, 40(2), 344–352. https://doi.org/10.1016/j.lwt.2005.09.011
Kut, K., Tama, A., Furdak, P., Bartosz, G. & Sadowska-Bartosz, I. (2024). Generation of Hydrogen Peroxide and Phenolic Content in Plant-Material-Based Beverages and Spices. Processes, 12(1), 166. https://doi.org/10.3390/pr12010166
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.
Martinez-Lopez, A., Millan-Linares, M. C., Rodriguez-Martin, N. M., Millan, F. & Montserrat-de la Paz, S. (2020). Nutraceutical value of kiwicha (Amaranthus caudatus L.). Journal of Functional Foods, 65, 103735. https://doi.org/10.1016/j.jff.2019.103735
McConnell, E. L., Basit, A. W. & Murdan, S. (2010). Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. Journal of Pharmacy and Pharmacology, 60(1), 63-70.https://doi.org/10.1211/jpp.60.1.0008
Miao, M. & Xiang, L. (2020). Pharmacological action and potential targets of chlorogenic acid. Advances in Pharmacology, 87, 71–88. https://doi.org/10.1016/bs.apha.2019.12.002
Moriasi, G. A., Ireri, A. M. & Ngugi, M. P. (2020). In Vivo Cognitive-Enhancing, Ex Vivo Malondialdehyde-Lowering Activities and Phytochemical Profiles of Aqueous and Methanolic Stem Bark Extracts of Piliostigma thonningii (Schum.). International Journal of Alzheimer's Disease, 2020, 1–15. https://doi.org/10.1155/2020/1367075.
Moron, M. S., Depierre, J. W. & Mannervik, B. (1979). Levels of glutathione, glutathione reductase and glutathione s-transferase activities in rat lung and liver. Biochimica et Biophysica Acta (BBA)-general subjects, 582(1), 67-78.
Muanda, F., Koné, D., Dicko, A., Soulimani, R. & Younos, C. (2011). Phytochemical Composition and Antioxidant Capacity of Three Malian Medicinal Plant Parts. Evidence-Based Complementary and Alternative Medicine, 2011(1), 1–8. https://doi.org/10.1093/ecam/nep109
Ndhlala, A., Moyo, M. & Van Staden, J. (2010). Natural Antioxidants: Fascinating or Mythical Biomolecules. Molecules, 15(10), 6905–6930. https://doi.org/10.3390/molecules15106905
Nishikimi, M., Rao, N. A. & Yagi, K. (1972). The Occurrence of Superoxide Anion in the Reaction of Reduced Phenazine Methosulfate and Molecular Oxygen. Biochemical And Biophysical Research Communications, 46(2).
Ogut, E., Armagan, K. & Gül, Z. (2022). The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations. Metabolic Brain Disease, 37(4), 859–880. https://doi.org/10.1007/s11011-022-00960-3
Ohkawa, H., Ohishi, N. & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3
Okuyama, H., Nakamura, H., Shimahara, Y, Araya, S., Kawada, N., Yamaoka, Y. & Junji Yodoi. (2003). Overexpression of thioredoxin prevents acute hepatitis caused by thioacetamide or lipopolysaccharide in mice. Hepatology, 37(5), 1015–1025. https://doi.org/10.1053/jhep.200 3.50203
Pallottini, V., Martini, C., Bassi, A. M., Romano, P., Nanni, G. & Trentalance, A. (2006). Rat HMGCoA reductase activation in thioacetamide-induced liver injury is related to an increased reactive oxygen species content. Journal of Hepatology, 44(2), 368–374. https://doi.org/10.1016/j.jhep.2005.06.011
Park, S. J., Sharma, A. & Lee, H. J. (2020). A Review of Recent Studies on the Antioxidant Activities of a Third-Millennium Food: Amaranthus spp. Antioxidants, 9(12), 1236. https://doi.org/10.3390/antiox9121236
Patel, A., Patel, A., Patel, A. & Patel, N.M. (2010). Determination of polyphenols and free radical scavenging activity of Tephrosia purpurea Linn leaves (Leguminosae). Pharmacognosy Research, 2(3), 152. https://doi.org/10.4103/0974-8490.65509
Patel, K. & Patel, D. K. (2019). The beneficial role of rutin, a naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update. Bioactive food as dietary interventions for arthritis and related inflammatory diseases, 457-479. https://doi.org/10.1016/B978-0-12-813820-5.00026-X
Pattanayak, S., Mandal, T. K. & Bandyopadhyay, S. K. (2016). Ethnomedicinal study of plants used for protection and stimulation of liver in Southern West Bengal, India. In Exploratory Animal And Medical Research, 6(2), 164-178.
Prasad, R. & Prasad, S. B. (2019). A review on the chemistry and biological properties of Rutin, a promising nutraceutical agent. Asian Journal of Pharmacy and Pharmacology, 5(S1), 1–20. https://doi.org/10.31024/ajpp.2019.5.s1.1
Randjelović, P., Veljković, S., Stojiljković, N., Sokolović, D., Ilić, I., Laketić, D., Randjelović, D. & Randjelović, N. (2015). The Beneficial Biological Properties of Salicylic Acid. Acta Facultatis Medicae Naissensis, 32(4), 259–265. https://doi.org/10.1515/afmnai-2015-0026
Sarker, U. & Oba, S. (2019). Antioxidant constituents of three selected red and green color Amaranthus leafy vegetable. Scientific Reports, 9(1), 18233. https://doi.org/10.1038/s41598-019-52033-8
Sarker, U. & Oba, S. (2020). Nutritional and bioactive constituents and scavenging capacity of radicals in Amaranthus hypochondriacus. Scientific Reports, 10(1), 19962. https://doi.org/10.1038/s41598-020-71714-3
Sarker, U., Oba, S., Ercisli, S., Assouguem, A., Alotaibi, A. & Ullah, R. (2022). Bioactive Phytochemicals and Quenching Activity of Radicals in Selected Drought-Resistant Amaranthus tricolor Vegetable Amaranth. Antioxidants, 11(3), 578. https://doi.org/10.3390/antiox11030578
Sarker, U., Oba, S., Ullah, R., Bari, A., Ercisli, S., Skrovankova, S., Adamkova, A., Zvonkova, M. & Mlcek, J. (2024). Nutritional and bioactive properties and antioxidant potential of Amaranthus tricolor, A. lividus, A viridis, and A. spinosus leafy vegetables. Heliyon, 10(9), e30453. https://doi.org/10.1016/j.heliyon.2024.e30453
Shi, H., Dong, L., Jiang, J., Zhao, J., Zhao, G., Dang, X., Lu, X. & Jia, M. (2013). Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway. Toxicology, 303, 107–114. https://doi.org/10.1016/j.tox.2012.10.025
Stalikas, C. D. (2010). Phenolic Acids and Flavonoids: Occurrence and Analytical Methods. Free Radicals and Antioxidant Protocols, 610 ,65–90. https://doi.org/10.1007/978-1-60327-029-8_5
Tanmoy, G., Arijit, M., Tanushree, S., Jagadish, S., & Kumar, M. T. (2014). Pharmacological Actions and Phytoconstituents of Amaranthus spinosus Linn: A Review. International Journal of Pharmacognosy and Phytochemical Research, 6(2), 405–413.
Vollmannová, A., Bojňanská, T., Musilová, J., Lidiková, J. & Ňorbová, M. (2024). Quercetin as one of the most abundant represented biological valuable plant components with remarkable chemoprotective effects- A review. Heliyon, 10(12), e33342.https://doi.org/10.1016/j.heliyo n.2024.e33342
Wallace, M., Hamesch, K., Lunova, M., Kim, Y., Weiskirchen, R., Strnad, P. & Friedman, S. (2015). Standard Operating Procedures in Experimental Liver Research: Thioacetamide model in mice and rats. Laboratory Animals, 49(1_suppl), 21–29. https://doi.org/10.1177/002367 7215573040
Yang, D., Wang, T., Long, M. & Li, P. (2020). Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxidative Medicine and Cellular Longevity, 2020(1), 1–13. https://doi.org/10.1155/2020/8825387
Yang, J., Guo, J. & Yuan, J. (2008). In vitro antioxidant properties of rutin. LWT - Food Science and Technology, 41(6), 1060–1066. https://doi.org/10.1016/j.lwt.2007.06.010
Zaiter, A., Becker, L., Karam, M. C., and Dicko, A. (2016). Effect of particle size on antioxidant activity and catechin content of green tea powders. Journal of food science and technology, 53 (4), 2025-2032. https://doi.org/10.1007/s13197-016-2201-4
Section
Research Articles

How to Cite

A comparative study of antioxidant potentials and phenolic acid and flavonoid profiles of Amaranthus spinosus leaf, stem and root extracts. (2025). Journal of Applied and Natural Science, 17(2), 903-925. https://doi.org/10.31018/jans.v17i2.6256