Article Main

Serhii Shchypanskyi Nataliia Raksha Tetiana Vovk Tetiana Halenova Olexiy Savchuk

Abstract

Protein hydrolysates and plant peptide extracts can become next-generation natural, eco-friendly food supplementary with a wide range of bioactive features. From folk medicine, it is known about the aqueous extract of the common bean (Phaseolus vulgaris) and its exceptional treatment features. Various abilities of peptides from P.vulgaris have been closely studied in recent years, but another component of “bean pod tea” – husk hydrolysates has not been studied at all. Therefore, this study aimed to obtain and perform a primary analysis of peptides from common bean husks using two methods-acidic hydrolysis and perchloric acid extraction. The first method was based on the hydrolysis of protein-rich plant extracts by acetic acid, allowing to obtain hydrolysis-derived peptides, while extraction by perchloric acid resulted in retrieving of native endogenous peptides.  Using Spectrophotometry and size-exclusion chromatography, the study showed that the perchloric acid extraction method allows the extraction of peptides with MW 205-590 Da, which have moderate OH-scavenging activity. Peptides obtained by acidic hydrolysis (192-610 Da) had significantly higher levels of DPPH-scavenging and FRAP activities (14 ± 0,68 % and 27 ± 1,12 % respectively). Therefore, peptides from P. vulgaris bean husk have antioxidant activity, and to elaborate on these findings, the antimicrobial and inhibitory activities of these peptides should be tested in future studies.


 

Article Details

Article Details

Keywords

Antioxidant activity, Bean husk hydrolysate, Peptides, Phaseolus vulgaris

References
Cruz-Casas, D. E., Aguilar, C. N., Ascacio-Valdés, J. A., Rodríguez-Herrera, R., Chávez-González, M. L., & Flores-Gallegos, A. C. (2021). Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chemistry: Molecular Sciences, 3. https://doi.org/10.1016/j.fochms.2021.100047
de Fátima Garcia, B., de Barros, M., & de Souza Rocha, T. (2021). Bioactive peptides from beans with the potential to decrease the risk of developing noncommunicable chronic diseases. In Critical Reviews in Food Science and Nutrition (pp 2003–2021). Bellwether Publishing, Ltd. https://doi.org/10.1080/10408398.2020.1768047
Durand, E., Beaubier, S., Ilic, I., Fine, F., Kapel, R., & Villeneuve, P. (2021). Production and antioxidant capacity of bioactive peptides from plant biomass to counteract lipid oxidation. In Current Research in Food Science (pp 365–397). Elsevier B.V. https://doi.org/10.1016/j.crfs.2021.05.006
Fan, H., Liu, H., Zhang, Y., Zhang, S., Liu, T., & Wang, D. (2022). Review on plant-derived bioactive peptides: biological activities, mechanism of action and utilizations in food development. In Journal of Future Foods (pp 143–159). Beijing Academy of Food Sciences. https://doi.org/10.1016/j.jfutfo.2022.03.003
Gülçin, I. (2012). Antioxidant activity of food constituents: An overview. In Archives of Toxicology (pp 345–391). https://doi.org/10.1007/s00204-011-0774-2
Gunas, V., Maievskyi, O., Raksha, N., Vovk, T., Savchuk, O., Shchypanskyi, S., & Gunas, I. (2023). Protein and peptide profiles of rats’ organs in scorpion envenomation. Toxicology Reports, 10, 615–620. https://doi.org/10.1016/j.toxrep.2023.05.008
Haiwei, R. (2010). Antioxidant and free radical-scavenging activities of black soybean peptides (BSP). International Journal of Agricultural and Biological Engineering, 3(2), 64–69. https://doi.org/10.3965/j.issn.1934-6344.2010.02.064-069
Helmstädter, A. (2010). Beans and diabetes: Phaseolus vulgaris preparations as antihyperglycemic agents. In Journal of Medicinal Food (pp 251–254). https://doi.org/10.1089/jmf.2009.0002
Hu, K., Huang, H., Li, H., Wei, Y., & Yao, C. (2023). Legume-Derived Bioactive Peptides in Type 2 Diabetes: Opportunities and Challenges. In Nutrients (Vol. 15, Issue 5). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/nu15051096
Jayaprakasha, G. K., Singh, R. P., & Sakariah, K. K. (2001). Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chemistry, 73(3), 285–290. https://doi.org/10.1016/S0308-8146(00)00298-3
Muhialdin, B. J., Abdul Rani, N. F., & Meor Hussin, A. S. (2020). Identification of antioxidant and antibacterial activities for the bioactive peptides generated from bitter beans (Parkia speciosa) via boiling and fermentation processes. LWT, 131. https://doi.org/10.1016/j.lwt.2020.109776
Ohara, A., Cason, V. G., Nishide, T. G., Miranda de Matos, F., & de Castro, R. J. S. (2021). Improving the antioxidant and antidiabetic properties of common bean proteins by enzymatic hydrolysis using a blend of proteases. Biocatalysis and Biotransformation, 39(2), 100–108. https://doi.org/10.1080/10242422.2020.1789114
Ohashi, Y., Onuma, R., Naganuma, T., Ogawa, T., Naude, R., Nokihara, K., & Muramoto, K. (2015). Antioxidant properties of tripeptides revealed by a comparison of six different assays. Food Science and Technology Research, 21(5), 695–704. https://doi.org/10.3136/fstr.21.695
Olivares-Galván, S., Marina, M. L., & García, M. C. (2020). Extraction and Characterization of Antioxidant Peptides from Fruit Residues. In Foods (Vol. 9, Issue 8). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/foods9081018
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Analytical Biochemistry, 269(2), 337–341. https://doi.org/10.1006/abio.1999.4019
Rice-evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M., & Pridham, J. B. (1995). The Relative Antioxidant Activities of Plant-Derived Polyphenolic Flavonoids. Free Radical Research, 22(4), 375–383. https://doi.org/10.3109/10715769509145649
Rieder, A., Afseth, N. K., Böcker, U., Knutsen, S. H., Kirkhus, B., Mæhre, H. K., Ballance, S., & Wubshet, S. G. (2021). Improved estimation of in vitro protein digestibility of different foods using size exclusion chromatography. Food Chemistry, 358. https://doi.org/10.1016/j.foodchem.2 021.129830
Rivai, H., Para Ramadhani, U., & Chandra, B. (2020). Overview of phytochemistry and pharmacology of chickpeas (Phaseolus vulgaris). Article in World Journal of Pharmacy and Pharmaceutical Sciences. https://doi.org/10.20959/wjpps20209-17179
Sonklin, C., Laohakunjit, N., & Kerdchoechuen, O. (2018). Assessment of antioxidant properties of membrane ultrafiltration peptides from mungbean meal protein hydrolysates. PeerJ, 2018(7). https://doi.org/10.7717/peerj.5337
Tassoni, A., Tedeschi, T., Zurlini, C., Cigognini, I. M., Petrusan, J. I., Rodríguez, Ó., Neri, S., Celli, A., Sisti, L., Cinelli, P., Signori, F., Tsatsos, G., Bondi, M., Verstringe, S., Bruggerman, G., & Corvini, P. F. X. (2020). State-of-the-art production chains for peas, beans and chickpeas—valorization of agro-industrial residues and applications of derived extracts. In Molecules (Vol. 25, Issue 6). MDPI AG. https://doi.org/10.3390/molecules25061383
Zhang, M., Mu, T. H., & Sun, M. J. (2014). Purification and identification of antioxidant peptides from sweet potato protein hydrolysates by Alcalase. Journal of Functional Foods, 7(1), 191–200. https://doi.org/10.1016/j.jff.201 4.02.012
Section
Research Articles

How to Cite

Antioxidant properties of common bean (Phaseolus vulgaris) husk-derived peptides. (2025). Journal of Applied and Natural Science, 17(1), 200-204. https://doi.org/10.31018/jans.v17i1.6247