Assessment of soil health of different perennial tree species in orchard of coarse loamy Typic Haplustepts soil of Punjab
Article Main
Abstract
Assessment and quantification of soil health through the Soil Quality Index (SQI) is an important tool for the comparative evaluation of different land use systems. The present study aimed to evaluate the long-term effects of four different perennial orchards (>8 years)- kinnow (Citrus nobilis x Citrus deliciosa L.), guava (Psidium guajava L.), mango (Mangifera indica L.), and ber (Ziziphus mauritiana) on soil health attributes concerning different soil functions in surface (0–20 cm) and sub-surface (20–40 cm) soil layers. The effectiveness of these orchards in improving soil health was compared with that of a natural forest and cultivated agriculture (maize; Zea mays L.). Different perennial orchard plantations exhibited varying values for soil health attributes. Principal component analysis (PCA) identified soil texture as the primary factor influencing soil function in the selected orchards due to monsoonal flooding and erosion. The SQI values revealed that in surface soil (0-20 cm), kinnow (0.836) and guava (0.848) orchards had values comparable to the natural forest (0.857), whereas mango (0.727) and ber (0.708) orchards had even lower values than the cultivated agriculture (0.817). In the sub-surface soil (20-40 cm), cultivated agriculture (0.653) revealed the lowest SQI values, highlighting the importance of perennial tree species in improving sub-surface soil health through the high return of root biomass. The study concluded that kinnow and guava orchards improved soil health by preventing land degradation, whereas mango and ber orchards had a lower potential for this purpose. Proper management practices can help sustain soil health and prevent degradation.
Article Details
Article Details
Perennial tree species, Orchard, Soil health, Soil quality index (SQI)
Andrews, Susan S., D. L. Karlen, and J. P. Mitchell. "A comparison of soil quality indexing methods for vegetable production systems in Northern California." Agriculture, Ecosystems and Environment 90.1 (2002): 25-45. https://doi.org/10.1016/S0167-8809(01)00174-8
Barrows, H. L. & Simpson, E. C. (1962). An EDTA method for the direct routine determination of calcium and magnesium in soils and plant tissue. Soil Science Society of America Journal, 26(5), 443-445. https://doi.org/10.2136/sssaj1962.03615995002600050012x
Blake, G. R. & Hartge, K. H. (1986). Bulk Density, In: Klute, A. (Ed.), Methods of Soil Analysis, Part I. Physical and Mineralogical Methods: Agronomy Monograph no. 9, 2nd ed. , pp. 363–375. https://doi.org/10.2136/sssabookser5.1.2ed.c13
Bouyoucos, G. H. (1951) A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43, 434- 438.
Bower, C. A. R., Reitemeier, F. & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73(4), 251–262. https://doi.org/10.1097/00010694- 195204000-00001.
Casida, L. E. (1977). Microbial metabolic activity in soil as measured by dehydrogenase determinations. Applied and environmental microbiology, 34(6), 630-636. https://doi.org/10.1128/aem.34.6.630-636.1977
Chesnin, L. & Yien, C. H. (1950). Turbimetric determination of available sulphates. Soil Science Society of America Proceedings, 28,149-151.
Clunes, J., Valle, S., Dörner, J., Martínez, O., Pinochet, D., Zúñiga, F. & Blum, W. E. (2022). Soil fragility: A concept to ensure a sustainable use of soils. Ecological Indicators, 139, 108969. https://doi.org/10.1016/j.ecolind.2022.108969
Crookston, B., Yost, M., Bowman, M., & Veum, K. (2022). Relationships of on‐farm soil health scores with corn and soybean yield in the midwestern United States. Soil Science Society of America Journal, 86(1), 91-105. https://doi.org/10.1002/saj2.20355
Dincă, L. C., Grenni, P., Onet, C., & Onet, A. (2022). Fertilization and soil microbial community: a review. Applied Sciences, 12(3), 1198. https://doi.org/10.3390/app12031198
Eze, S., Dougill, A. J., Banwart, S. A., Sallu, S. M., Mgohele, R. N., & Senkoro, C. J. (2022). Assessing soil system changes under climate‐smart agriculture via farmers' observations and conventional soil testing. Land Degradation and Development, 33(14), 2635-2646. https://doi.org/10.1002/ldr.4339
Farhangi-Abriz, S., & Ghassemi-Golezani, K. (2021). Changes in soil properties and salt tolerance of safflower in response to biochar-based metal oxide nanocomposites of magnesium and manganese. Ecotoxicology and Environmental Safety, 211, 111904. https://doi.org/10.1016/j.ecoenv.2021.111904
Fu, B., Chen, L., Huang, H., Qu, P., & Wei, Z. (2021). Impacts of crop residues on soil health: A review. Environmental Pollutants and Bioavailability, 33(1), 164-173. https://doi.org/10.1080/26395940.2021.1948354
Ghazali, M. F., Wikantika, K., Harto, A. B., & Kondoh, A. (2020). Generating soil salinity, soil moisture, soil pH from satellite imagery and its analysis. Information Processing in Agriculture, 7(2), 294-306. https://doi.org/10.1016/j.inpa.2019.08.003
Gruba, P., & Mulder, J. (2015). Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Science of the Total Environment, 511, 655-662. https://doi.org/10.1016/j.scitotenv.2015.01.013
Hanway, J. J. & Heidal, H. (1952). Soil analysis methods as used in Iowa State College Soil Testing Laboratory. Iowa State College of Agriculture Bulletin, 57, 1-31.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., ... & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748
Hossain, A., Krupnik, T. J., Timsina, J., Mahboob, M. G., Chaki, A. K., Farooq, M., ... & Hasanuzzaman, M. (2020). Agricultural land degradation: processes and problems undermining future food security. In Environment, climate, plant and vegetation growth (pp. 17-61). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-49732-3_2
Huang, J., & Hartemink, A. E. (2020). Soil and environmental issues in sandy soils. Earth-Science Reviews, 208, 103295. https://doi.org/10.1016/j.earscirev.2020.103295
Iqbal, S., Riaz, U., Murtaza, G., Jamil, M., Ahmed, M., Hussain, A., & Abbas, Z. (2021). Chemical fertilizers, formulation, and their influence on soil health. Microbiota and Biofertilizers: A Sustainable Continuum for Plant and Soil Health, 1-15. https://doi.org/10.1007/978-3-030-48771-3_1
Jackson, M. L. (1973). Soil chemical analysis, pentice hall of India Pvt. Ltd., New Delhi, India, 498, 151-154.
Karlen, D. L., Andrews, S. S., Weinhold, B. J., & Doran, J. W. (2003). Soil quality: Humankind's foundation for survival a research editorial by conservation professionals. Journal of Soil and Water Conservation, 58(4), 171-179. https://www.jswconline.org/content/58/4/171
Laskar, S. Y., Sileshi, G. W., Pathak, K., Debnath, N., Nath, A. J., Laskar, K. Y., ... & Das, A. K. (2021). Variations in soil organic carbon content with chronosequence, soil depth and aggregate size under shifting cultivation. Science of the Total Environment, 762, 143114. https://doi.org/10.1016/j.scitotenv.2020.143114
Luo, P., Han, X., Wang, Y., Han, M., Shi, H., Liu, N., & Bai, H. (2015). Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China. Annals of microbiology, 65, 533-542. https://link.springer.com/article/10.1007/s13213-014-0889-9
Luo, Z., Viscarra Rossel, R. A., & Shi, Z. (2020). Distinct controls over the temporal dynamics of soil carbon fractions after land use change. Global change biology, 26(8), 4614-4625. https://doi.org/10.1111/gcb.15157
Lykogianni, M., Bempelou, E., Karamaouna, F., & Aliferis, K. A. (2021). Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Science of the Total Environment, 795, 148625. https://doi.org/10.1016/j.scitotenv.2021.148625
M. Tahat, M., M. Alananbeh, K., A. Othman, Y., & I. Leskovar, D. (2020). Soil health and sustainable agriculture. Sustainability, 12(12), 4859. https://doi.org/10.3390/su12124859
Macfadyen, A. (1970). Soil metabolism in relation to ecosystem energy flow and to primary and secondary production. In" Methods of Study in Soil Ecology" Proc. UNESCO/IBP Symp. Paris, 167-172.
Mandal, A., Sarkar, B., Mandal, S., Vithanage, M., Patra, A. K., & Manna, M. C. (2020). Impact of agrochemicals on soil health. In Agrochemicals detection, treatment and remediation (pp. 161-187). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-103017-2.00007-6
Mao, F., Zhao, X., Ma, P., Chi, S., Richards, K., Clark, J., ... & Krause, S. (2019). Developing composite indicators for ecological water quality assessment based on network interactions and expert judgment. Environmental Modelling & Software, 115, 51-62. https://doi.org/10.1016/j.envsoft.2019.01.011
Marañón-Jiménez, S., Serrano-Ortíz, P., Peñuelas, J., Meijide, A., Chamizo, S., López-Ballesteros, A., ... & Fernández-Ondoño, E. (2022). Effects of herbaceous covers and mineral fertilizers on the nutrient stocks and fluxes in a Mediterranean olive grove. European Journal of Agronomy, 140, 126597. https://doi.org/10.1016/j.eja.2022.126597
Massaccesi, L., De Feudis, M., Leccese, A., & Agnelli, A. (2020). Altitude and vegetation affect soil organic carbon, basal respiration and microbial biomass in Apennine forest soils. Forests, 11(6), 710. https://doi.org/10.3390/f11060710
Middleton, H. E. (1930). Properties of soils which influence soil erosion. US Dept. of Agriculture.Cropping System. In Biological Forum–An International Journal (Vol. 15, No. 8a, pp. 496-502).
Moradi, S., Rasouli-Sadaghiani, M. H., Sepehr, E., Khodaverdiloo, H., & Barin, M. (2019). Soil nutrients status affected by simple and enriched biochar application under salinity conditions. Environmental monitoring and assessment, 191, 1-13 https://doi.org/10.1007/s10661-019-7393-4
Mosier, S., Córdova, S. C., & Robertson, G. P. (2021). Restoring soil fertility on degraded lands to meet food, fuel, and climate security needs via perennialization. Frontiers in Sustainable Food Systems, 5, 706142. https://doi.org/10.3389/fsufs.2021.706142
Naylor, D., McClure, R., & Jansson, J. (2022). Trends in microbial community composition and function by soil depth. Microorganisms, 10(3), 540. https://doi.org/10.3390/microorganisms10030540
O’Sullivan, J. N. (2023). Demographic delusions: World population growth is exceeding most projections and jeopardising scenarios for sustainable futures. World, 4(3), 545-568. https://doi.org/10.3390/world4030034
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
Orzech, K., Wanic, M., & Załuski, D. (2021). The effects of soil compaction and different tillage systems on the bulk density and moisture content of soil and the yields of winter oilseed rape and cereals. Agriculture, 11(7), 666. https://doi.org/10.3390/agriculture11070666
Pärnpuu, S., Astover, A., Tõnutare, T., Penu, P., & Kauer, K. (2022). Soil organic matter qualification with FTIR spectroscopy under different soil types in Estonia. Geoderma Regional, 28, e00483. https://doi.org/10.1016/j.geodrs.2022.e00483
Piotrowska-Długosz, A., Długosz, J., Gryta, A., & Frąc, M. (2022). Responses of N-cycling enzyme activities and functional diversity of soil microorganisms to soil depth, pedogenic processes and cultivated plants. Agronomy, 12(2), 264. https://doi.org/10.3390/agronomy12020264
Prescott, C. E., & Vesterdal, L. (2021). Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. Forest Ecology and Management, 498, 119522. https://doi.org/10.1016/j.foreco.2021.119522
Pulido-Moncada, M., Munkholm, L. J., & Schjønning, P. (2019). Wheel load, repeated wheeling, and traction effects on subsoil compaction in northern Europe. Soil and Tillage Research, 186, 300-309. https://doi.org/10.1016/j.still.2018.11.005
Rafie, J., & Kumar, R. (2021). Characterization and classification of normal soils of Kapurthala district, Punjab, India. International Journal of Applied Chemical and Biological Sciences, 2(4), 12-29. https://identifier.visnav.in/1.0001/ijacbs-21e-03107/
Sarkar, S., Skalicky, M., Hossain, A., Brestic, M., Saha, S., Garai, S., ... & Brahmachari, K. (2020). Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability, 12(23), 9808. https://doi.org/10.3390/su12239808
Saroj, P. L., and Hare Krishna. "Organic Horticulture for Sustainable Production and Livelihood Security in Drylands." Organic Crop Production Management. Apple Academic Press, 2023. 181-200. https://doi.org/10.1201/9781003283560
Sauzet, O., Cammas, C., Gilliot, J. M., & Montagne, D. (2023). Long-term quantification of the intensity of clay-sized particles transfers due to earthworm bioturbation and eluviation/illuviation in a cultivated Luvisol. Geoderma, 429, 116251. https://doi.org/10.1016/j.geoderma.2022.116251
Sharma, K. L., Mandal, U. K., Srinivas, K., Vittal, K. P. R., Mandal, B., Grace, J. K., & Ramesh, V. (2005). Long-term soil management effects on crop yields and soil quality in a dryland Alfisol. Soil and Tillage Research, 83(2), 246-259. https://doi.org/10.1016/j.still.2004.08.002
Shen, Y., Stedtfeld, R. D., Guo, X., Bhalsod, G. D., Jeon, S., Tiedje, J. M., ... & Zhang, W. (2019). Pharmaceutical exposure changed antibiotic resistance genes and bacterial communities in soil-surface-and overhead-irrigated greenhouse lettuce. Environment international, 131, 105031. https://doi.org/10.1016/j.envint.2019.105031
Sofo, A., Zanella, A., & Ponge, J. F. (2022). Soil quality and fertility in sustainable agriculture, with a contribution to the biological classification of agricultural soils. Soil Use and Management, 38(2), 1085-1112. https://doi.org/10.1111/sum.12702
Subbaiah, B. V. & Asija, G. L. (1956). A rapid procedure for the estimation of available nitrogen in soil. Current Science, 25, 258 - 260.
Szostek, M., Szpunar-Krok, E., Pawlak, R., Stanek-Tarkowska, J., & Ilek, A. (2022). Effect of different tillage systems on soil organic carbon and enzymatic activity. Agronomy, 12(1), 208. https://doi.org/10.3390/agronomy12010208
Tarolli, P., & Straffelini, E. (2020). Agriculture in hilly and mountainous landscapes: threats, monitoring and sustainable management. Geography and sustainability, 1(1), 70-76. https://doi.org/10.1016/j.geosus.2020.03.003
Tiwari, S., Singh, C., Boudh, S., Rai, P. K., Gupta, V. K., & Singh, J. S. (2019). Land use change: A key ecological disturbance declines soil microbial biomass in dry tropical uplands. Journal of environmental management, 242, 1-10. https://doi.org/10.1016/j.jenvman.2019.04.052
Vance, E. D., Brookes, P. C. & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil biology and Biochemistry, 19(6), 703-7.
Walkley, A. & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.
Wolka, K., Biazin, B., Martinsen, V., & Mulder, J. (2021). Soil and water conservation management on hill slopes in Southwest Ethiopia. I. Effects of soil bunds on surface runoff, erosion and loss of nutrients. Science of The Total Environment, 757, 142877. https://doi.org/10.1016/j.scitotenv.2020.142877
Wu, W., Zhou, X., Wen, Y., Zhu, H., You, Y., Qin, Z., ... & Li, X. (2019). Coniferous-broadleaf mixture increases soil microbial biomass and functions accompanied by improved stand biomass and litter production in subtropical China. Forests, 10(10), 879. https://doi.org/10.3390/f10100879
Zeraatpisheh, M., Bakhshandeh, E., Hosseini, M., & Alavi, S. M. (2020). Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping. Geoderma, 363, 114139. https://doi.org/10.10 16/j.geoderma.2019.114139
Zhang, H., Jiang, Y., Song, M., He, J., & Guan, D. (2020). Improving understanding of carbon stock characteristics of Eucalyptus and Acacia trees in southern China through litter layer and woody debris. Scientific Reports, 10(1), 4735. https://doi.org/10.1038/s41598-020-61476-3

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)