Detection of antimicrobial resistance genes (ARGs) in surface waters and the anthropogenic factors influencing its abundance: A systematic review
Article Main
Abstract
Antimicrobial resistance (AMR) is a global public health threat, and several studies have aimed to identify resistant pathogens and/or associated antimicrobial resistance genes in surface waters. A systematic review of 98 studies was done to obtain a bigger picture of detecting antibiotic resistance genes (ARGs) across surface waters and the factors influencing its abundance. Available data revealed a high abundance and detection rate of ARGs conferring resistance to critically important antibiotics. Tetracycline and sulfonamide resistance genes were the most frequently studied within the past 10 years. The highest reported abundance of ARGs is up to 1011 copies per mL for ermF gene, quantified using quantitative PCR (qPCR). More advanced methods such as metagenomic sequencing, digital droplet PCR (ddPCR), and high-throughput quantitative PCR (HT-qPCR) identified greater numbers of ARGs per run compared to the conventional PCR and qPCR methods. This study emphasized the role of surface waters in the dissemination of ARGs. Surface waters not only harbor ARGs but are also significantly influenced by human activities, which alter ARG concentrations, demonstrating a two-way relationship between human activities and the environment, where surface waters serve both as recipients and conduits of ARGs, reflecting the complex interplay between anthropogenic influences and environmental systems. Recommendations for future directions in AMR surveillance studies are also provided.
Article Details
Article Details
Antibiotic resistance genes (ARG) abundance, Antimicrobial resistance genes, Assays, Surface water
Ahmad, I, Malak, HA, & Abulreesh, HH. (2021). Environmental antimicrobial resistance and its drivers: a potential threat to public health. Journal of Global Antimicrobial Resistance, 27, 101-111. doi: 10.1016/j.jgar.2021.08.001.
Ahmed, W., Gyawali, P., Hamilton, K. A., Joshi, S., Aster, D., Donner, E., ... & Symonds, E. M. (2021). Antibiotic resistance and sewage-associated marker genes in untreated sewage and a river characterized during baseflow and stormflow. Frontiers in Microbiology, 12, 632850. doi: 10.3389/fmicb.2021.632850.
Amarasiri, M., Sano, D., & Suzuki, S. (2020). Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Critical Reviews in Environmental Science and Technology, 50(19), 2016-2059. doi: 10.1080/10643389.2019.1692611.
Bassetti, M, Vena, A, Giacobbe, DR, & Castaldo, N. (2021). Management of infections caused by multidrug-resistant gram-negative pathogens: recent advances and future directions. Archives of Medical Research, 52(8), 817-827. doi: 10.1016/j.arcmed.2021.09.002.
Cheng, J., Tang, X., & Liu, C. (2020). Occurrence and distribution of antibiotic resistance genes in various rural environmental media. Environmental Science and Pollution Research, 27, 29191-29203. doi: 10.1007/s11356-020-09287-x.
Cho, S., Jackson, C. R., & Frye, J. G. (2020). The prevalence and antimicrobial resistance phenotypes of Salmonella, Escherichia coli and Enterococcus sp. in surface water. Letters in Applied Microbiology, 71(1), 3-25. doi: 10.1111/lam.13301.
Davis, B. C., Riquelme, M. V., Ramirez-Toro, G., Bandaragoda, C., Garner, E., Rhoads, W. J., ... & Pruden, A. (2020). Demonstrating an integrated antibiotic resistance gene surveillance approach in Puerto Rican watersheds Post-Hurricane Maria. Environmental Science & Technology, 54(23), 15108-15119. doi: 10.1021/acs.est.0c05567.
Fresia, P., Antelo, V., Salazar, C., Giménez, M., D’Alessandro, B., Afshinnekoo, E., ... & Iraola, G. (2019). Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. Microbiome, 7, 1-9. doi: 10.1186/s40168-019-0648-z.
Gao, H., Zhao, F., Li, R., Jin, S., Zhang, H., Zhang, K., ... & Na, G. (2022). Occurrence and distribution of antibiotics and antibiotic resistance genes in water of Liaohe River Basin, China. Journal of Environmental Chemical Engineering, 10(5), 108297. doi: 10.1016/j.jece.2022.108297.
Gillings, M. R., Gaze, W. H., Pruden, A., Smalla, K., Tiedje, J. M., & Zhu, Y. G. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. The ISME journal, 9(6), 1269-1279. doi: 10.1038/ismej.2014.226.
Gu, J., Zhang, L., Wang, X., Lu, C., Liu, J., Liu, Y., ... & Xue, M. (2019). High-throughput analysis of the effects of different fish culture methods on antibiotic resistance gene abundances in a lake. Environmental Science and Pollution Research, 26, 5445-5453. doi: 10.1007/s11356-018-3972-0.
Gwenzi, W., Musiyiwa, K., & Mangori, L. (2020). Sources, behaviour and health risks of antimicrobial resistance genes in wastewaters: a hotspot reservoir. Journal of Environmental Chemical Engineering, 8(1), 102220. doi: 10.1016/j.jece.2018.02.028.
Hatosy, S. M., & Martiny, A. C. (2015). The ocean as a global reservoir of antibiotic resistance genes. Applied and environmental microbiology, 81(21), 7593-7599. doi: 10.1128/AEM.00736-15.
Hou, W., Hu, F., Sun, S., Dong, X., Wang, M., Zhao, Q., & Jia, R. (2020). Occurrence and distribution of antibiotic resistance genes in lakes and reservoirs from water-receiving area of Eastern Route of the South-to-North Water Diversion Project, Northern China. Water Supply, 20(8), 3029-3037. doi: 10.2166/ws.2020.190.
Hricová, K., Röderová, M., Fryčák, P., Pauk, V., Kurka, O., Mezerová, K., ... & Kolář, M. (2021). Prevalence of vancomycin-resistant enterococci and antimicrobial residues in wastewater and surface water. Life, 11(12), 1403. doi: 10.3390/life11121403.
Huang, Y., Wang, F., Li, Y., Yue, C., Zhang, Y., Zhou, P., & Mu, J. (2022). Influence of anthropogenic disturbances on antibiotic resistance gene distributions along the Minjiang River in Southeast China. Journal of Environmental Management, 323, 116154. doi: 10.1016/j.jenvman.2022.116154.
Ichola, O. D., Dougnon, V. T., Koudokpon, C. H., Agbankpe, A. J., Deguenon, E., Ayena, A. C., & Soclo, H. H. (2021). Assessment of the Bacterial Pollution and Detection of Antibiotic Resistance Genes in Benin: Case of the Hydrographic Channel Complex Cotonou‐Nokoué Lake. Journal of Environmental and Public Health, 2021(1), 6664816. doi: 10.1155/2021/6664816.
Jia, S., Zhang, X. X., Miao, Y., Zhao, Y., Ye, L., Li, B., & Zhang, T. (2017). Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water. Water research, 124, 259-268. doi: 10.1016/j.watres.2017.07.061.
Jiang, H., Zhou, R., Zhang, M., Cheng, Z., Li, J., Zhang, G., ... & Yang, Y. (2018). Exploring the differences of antibiotic resistance genes profiles between river surface water and sediments using metagenomic approach. Ecotoxicology and environmental safety, 161, 64-69. doi: 10.1016/j.ecoenv.2018.05.044.
Katsanou, K., & Karapanagioti, H. K. (2019). Surface water and groundwater sources for drinking water. Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment, 1-19. doi: 10.1007/698_2017_140.
Kasuga, I., Nagasawa, K., Suzuki, M., Kurisu, F., & Furumai, H. (2022). High-throughput screening of antimicrobial resistance genes and their association with class 1 integrons in urban rivers in Japan. Frontiers in Environmental Science, 10, 825372. doi: 10.3389/fenvs.2022.825372.
Liebert, C. A., Hall, R. M., & Summers, A. O. (1999). Transposon Tn 21, flagship of the floating genome. Microbiology and molecular biology reviews, 63(3), 507-522. doi: 10.1128/mmbr.63.3.507-522.1999.
Liu, S., Wang, P., Wang, C., Wang, X., & Chen, J. (2021). Anthropogenic disturbances on antibiotic resistome along the Yarlung Tsangpo River on the Tibetan Plateau: ecological dissemination mechanisms of antibiotic resistance genes to bacterial pathogens. Water Research, 202, 117447. doi: 10.1016/j.watres.2021.117447.
Liu, X., Xiao, P., Guo, Y., Liu, L., & Yang, J. (2019). The impacts of different high-throughput profiling approaches on the understanding of bacterial antibiotic resistance genes in a freshwater reservoir. Science of the total environment, 693, 133585. doi: 10.1016/j.scitotenv.2019.133585.
Lu, L., Liu, J., Li, Z., Liu, Z., Guo, J., Xiao, Y., & Yang, J. (2018). Occurrence and distribution of tetracycline antibiotics and resistance genes in longshore sediments of the three gorges reservoir, China. Frontiers in Microbiology, 9, 1911. doi: 10.3389/fmicb.2018.01911.
Mallah, N, Orsini, N, Figueiras, A, & Takkouche, B. (2022). Income level and antibiotic misuse: a systematic review and dose–response meta-analysis. The European Journal of Health Economics, 1-21. doi: 10.1007/s10198-021-01416-8.
Matchado, M. S., Lauber, M., Reitmeier, S., Kacprowski, T., Baumbach, J., Haller, D., & List, M. (2021). Network analysis methods for studying microbial communities: A mini review. Computational and structural biotechnology journal, 19, 2687-2698. doi: 10.1016/j.csbj.2021.05.001.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group*, T. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 151(4), 264-269. doi: 10.7326/0003-4819-151-4-200908180-00135.
Navarro, A., Sanseverino, I., Cappelli, F., Lahm, A., Niegowska, M., Fabbri, M., ... & Lettieri, T. (2023). Study of antibiotic resistance in freshwater ecosystems with low anthropogenic impact. Science of The Total Environment, 857, 159378. doi: 10.1016/j.scitotenv.2022.159378.
Nishiyama, M., Ogura, Y., Hayashi, T., & Suzuki, Y. (2017). Antibiotic resistance profiling and genotyping of vancomycin-resistant enterococci collected from an urban river basin in the provincial city of Miyazaki, Japan. Water, 9(2), 79. doi: 10.3390/w9020079.
Nobrega, D. B., Tang, K. L., Caffrey, N. P., De Buck, J., Cork, S. C., Ronksley, P. E., ... & Barkema, H. W. (2021). Prevalence of antimicrobial resistance genes and its association with restricted antimicrobial use in food-producing animals: a systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy, 76(3), 561-575. doi: 10.1093/jac/dkaa443.
Obayiuwana, A., Ogunjobi, A., & Ibekwe, A. (2021). Prevalence of antibiotic resistance genes in pharmaceutical wastewaters. Water, 13(13), 1731. doi: 10.3390/w13131731.
Ogura, Y., Ueda, T., Nukazawa, K., Hiroki, H., Xie, H., Arimizu, Y., ... & Suzuki, Y. (2020). The level of antimicrobial resistance of sewage isolates is higher than that of river isolates in different Escherichia coli lineages. Scientific reports, 10(1), 17880. doi: 10.1038/s41598-020-75065-x.
Paliy, O., & Shankar, V. (2016). Application of multivariate statistical techniques in microbial ecology. Molecular ecology, 25(5), 1032-1057. doi: 10.1111/mec.13536.
Partridge, S. R., Brown, H. J., Stokes, H. W., & Hall, R. M. (2001). Transposons Tn 1696 and Tn 21 and their integrons In4 and In2 have independent origins. Antimicrobial agents and chemotherapy, 45(4), 1263-1270. doi: 10.1128/aac.45.4.1263-1270.2001.
Paulus, G. K., Hornstra, L. M., & Medema, G. (2020). International tempo-spatial study of antibiotic resistance genes across the Rhine river using newly developed multiplex qPCR assays. Science of the total environment, 706, 135733. doi: 10.1016/j.scitotenv.2019.135733.
Peng, F, Guo, Y, Isabwe, A, Chen, H, Wang, Y, Zhang, Y, ... & Yang, J. (2020). Urbanization drives riverine bacterial antibiotic resistome more than taxonomic community at watershed scale. Environment International, 137, 105524. doi: 10.1016/j.envint.2020.105524.
Pérez, R. A., Albero, B., Férriz, M., & Tadeo, J. L. (2017). Analysis of macrolide antibiotics in water by magnetic solid-phase extraction and liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 146, 79-85. doi: 10.1016/j.jpba.2017.08.013.
Quillaguamán, J., Guzmán, D., Campero, M., Hoepfner, C., Relos, L., Mendieta, D., ... & Fernández, C. E. (2021). The microbiome of a polluted urban lake harbors pathogens with diverse antimicrobial resistance and virulence genes. Environmental Pollution, 273, 116488. doi: 10.1016/j.envpol.2021.116488.
Qin, L. T., Pang, X. R., Zeng, H. H., Liang, Y. P., Mo, L. Y., Wang, D. Q., & Dai, J. F. (2020). Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China. Science of the total environment, 708, 134552. doi: 10.1016/j.scitotenv.2019.134552.
Rödenbeck, M., Ayobami, O., Eckmanns, T., Pletz, M. W., Bleidorn, J., & Markwart, R. (2023). Clinical epidemiology and case fatality due to antimicrobial resistance in Germany: a systematic review and meta-analysis, 1 January 2010 to 31 December 2021. Eurosurveillance, 28(20), 2200672. doi: 10.2807/1560-7917.ES.2023.28.2 0.2200672.
Rozman, U., Duh, D., Cimerman, M., & Turk, S. Š. (2020). Hospital wastewater effluent: hot spot for antibiotic resistant bacteria. Journal of Water, Sanitation and Hygiene for Development, 10(2), 171-178. doi: 10.2166/washdev.2020.086.
Santajit, S., & Indrawattana, N. (2016). Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed research international, 2016(1), 2475067. doi: 10.1155/2016/2475067.
Shamsizadeh, Z, Ehrampoush, MH, Nikaeen, M, Mohammadi, F, Mokhtari, M, Gwenzi, W, & Khanahmad, H. (2021). Antibiotic resistance and class 1 integron genes distribution in irrigation water-soil-crop continuum as a function of irrigation water sources. Environmental Pollution, 289, 117930. doi: 10.1016/j.envpol.2021.117930.
Suzuki, S., Pruden, A., Virta, M., & Zhang, T. (2017). Antibiotic resistance in aquatic systems. Frontiers in microbiology, 8, 235507. doi: 10.3389/fmicb.2017.00014.
The World Bank. (2023). The World Bank in China. World Bank. Retrieved October 15, 2023. https://www.worldbank.org/en/country/china/overview.
Tiedje, J. M., Fu, Y., Mei, Z., Schäffer, A., Dou, Q., Amelung, W., ... & Wang, F. (2023). Antibiotic resistance genes in food production systems support One Health opinions. Current Opinion in Environmental Science & Health, 100492. doi: 10.1016/j.coesh.2023.100492.
Wang, Q, Guo, S, Hou, Z, Lin, H, Liang, H, Wang, L, ... & Ren, H. (2021). Rainfall facilitates the transmission and proliferation of antibiotic resistance genes from ambient air to soil. Science of the Total Environment, 799, 149260. doi: 10.1016/j.scitotenv.2021.149260.
Wang, X., Gu, J., Gao, H., Qian, X., & Li, H. (2018). Abundances of clinically relevant antibiotic resistance genes and bacterial community diversity in the Weihe River, China. International Journal of Environmental Research and Public Health, 15(4), 708. doi: 10.3390/ijerph15040708.
Williams, NL, Siboni, N, McLellan, SL, Potts, J, Scanes, P, Johnson, C, ... & Seymour, JR. (2022). Rainfall leads to elevated levels of antibiotic resistance genes within seawater at an Australian beach. Environmental Pollution, 307, 119456. doi: 10.1016/j.envpol.2022.119456.
World Health Organization. (2017). WHO publishes list of bacteria for which new antibiotics are urgently needed. Retrieved October 15, 2023. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.
World Health Organization. (2024). Antimicrobial resistance. Retrieved December 16, 2024. https://www.who.int/europe/news-room/fact-sheets/item/antim icrobial-resistance#:~:text=AMR%20is%20one%20of%20the,cancer%20chemotherapy%2C%20become%20much%20riskier.
Yang, J, Wang, H, Roberts, DJ, Du, HN, Yu, XF, Zhu, NZ, & Meng, XZ. (2020). Persistence of antibiotic resistance genes from river water to tap water in the Yangtze River Delta. Science of the Total Environment, 742, 140592. doi: 10.1016/j.scitotenv.2020.140592.
Yang, X., Yan, L., Yang, Y., Zhou, H., Cao, Y., Wang, S., ... & Qiu, Z. (2022). The occurrence and distribution pattern of antibiotic resistance genes and bacterial community in the Ili River. Frontiers in Environmental Science, 10, 840428.
Yang, Y., Li, B., Zou, S., Fang, H. H., & Zhang, T. (2014). Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water research, 62, 97-106. doi: 10.1016/j.watres.2014.05.019.
Young, S., Nayak, B., Sun, S., Badgley, B. D., Rohr, J. R., & Harwood, V. J. (2016). Vancomycin-resistant enterococci and bacterial community structure following a sewage spill into an aquatic environment. Applied and environmental microbiology, 82(18), 5653-5660. doi: 10.1128/AEM.01927-16.
Zhang, Y., Zhao, Y. G., Yang, D., & Zhao, Y. (2022). Insight into the removal of tetracycline-resistant bacteria and resistance genes from mariculture wastewater by ultraviolet/persulfate advanced oxidation process. Journal of Hazardous Materials Advances, 7, 100129. doi: 10.1016/j.hazadv.2022.100129.
Zheng, J., Gao, R., Wei, Y., Chen, T., Fan, J., Zhou, Z., ... & Chen, H. (2017). High-throughput profiling and analysis of antibiotic resistance genes in East Tiaoxi River, China. Environmental pollution, 230, 648-654. doi: 10.1016/j.envpol.2017.07.025.
Zhou, Z. C., Zheng, J., Wei, Y. Y., Chen, T., Dahlgren, R. A., Shang, X., & Chen, H. (2017). Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters. Environmental Science and Pollution Research, 24, 23753-23762. doi: 10.1007/s11356-017-0032-0.
Zhou, A., Tang, H., Zhang, L., Junaid, M., Xie, S., Zhang, Y., ... & Zou, J. (2023). Dynamics of bacterial community and antibiotic resistance genes in the aquaculture ponds of channel catfish (Ietalurus Punetaus): An association with the mobile genetic elements and environmental factors. Aquaculture, 562, 738726. doi: 10.1016/j.aquaculture.2022.738726.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)