Antimicrobial potential of selected fruit peel extracts against multidrug-resistant bacteria: An eco-friendly approach
Article Main
Abstract
The rapid rise of multidrug resistance (MDR) bacteria due to the misuse of antibiotics necessitates the discovery of alternative therapeutic agents. This study investigates the antimicrobial properties of methanolic extract of selected fruit peels: Carica papaya, Ananas comosus, Musa acuminata, and Punica granatum. These extracts were tested against gram-positive bacteria (Staphylococcus aureus) and gram-negative bacteria (Pseudomonas aeruginosa and Klebsiella pneumoniae). The findings indicated that all four fruit peel extracts exhibited antimicrobial activity against all the selected pathogenic strains. The effectiveness of the extracts followed the following orders: P. granatum > M. acuminata > C. papaya > A. comosus for S. aureus, P. granatum > C. papaya > M. acuminata > A. comosus for P. aeruginosa, and A. comosus > M. acuminata > C. papaya > P. granatum for K. pneumoniae. Notably, K. pneumoniae demonstrated high sensitivity to A. comosus extract with a Minimum Inhibitory Concentration (MIC) of 6.25 mg/mL. S. aureus inhibition was observed with a MIC of 12.5 mg/mL for both P. granatum and M. acuminata extracts, while P. aeruginosa showed a MIC of 12.5 mg/mL for both P. granatum and C. papaya extracts. Qualitative phytochemical analysis along with structural elucidation using Gas chromatography with Mass Spectrometry (GCMS) and Fourier Transform Infrared Spectroscopy (FTIR), identified medicinally significant compounds like Tetracyclononane hexamethyl, phthalic acid, 9-octadecenal, 7-methyl undecane, 2-dodecyl-propanediol in these peels, likely contributing to their antimicrobial activity. Thus, this study demonstrates the potential of these fruit peels as effective antimicrobial agents and highlights their role in sustainable waste management.
Article Details
Article Details
Antibacterial activity, fruit peels, Phytochemistry, Sustainability, Waste management
Agarwal, H., Menon, S., & Shanmugam, V. K. (2020). Functionalization of zinc oxide nanoparticles using Mucuna pruriens and its antibacterial activity. Surfaces and Interfaces, 19, 100521. https://doi.org/10.1016/j.surfin.2020.100521
Ain, H. B. U., Saeed, F., Colin J. Barrow, Frank R. Dunshea, & Hafiz Ansar Rasul Suleria. (2020). Food processing waste: A potential source for bioactive compounds. In Murthy HN & Bapat HN (Eds.), Bioactive Compounds in Underutilized Fruits and Nuts (pp. 625–649). https://doi.org/10.1007/978-3-030-06120-3_45-1
Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E.-M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
Balavijayalakshmi, J., & Ramalakshmi, V. (2017). Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. Journal of Applied Research and Technology, 15(5), 413–422. https://doi.org/10.1016/j.jart.2017.03.010
Bhavani, M., Morya, S., Saxena, D., & Awuchi, C. G. (2023). Bioactive, antioxidant, industrial, and nutraceutical applications of banana peel. International Journal of Food Properties, 26(1), 1277–1289. https://doi.org/10.1080/10942912.2023.2209701
Brown, D. (2015). Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? Nature Reviews Drug Discovery, 14(12), 821–832. https://doi.org/10.1038/nrd4675
Chinemerem Nwobodo, D., Ugwu, M. C., Oliseloke Anie, C., Al-Ouqaili, M. T. S., Chinedu Ikem, J., Victor Chigozie, U., & Saki, M. (2022). Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. Journal of Clinical Laboratory Analysis, 36(9). https://doi.org/10.1002/jcla.24655
Corre, M.-H., Mercier, A., Bouteiller, M., Khalil, A., Ginevra, C., Depayras, S., Dupont, C., Rouxel, M., Gallique, M., Grac, L., Jarraud, S., Giron, D., Merieau, A., Berjeaud, J.-M., & Verdon, J. (2021). Bacterial long-Range warfare: Aerial killing of Legionella pneumophila by Pseudomonas fluorescens. Microbiology Spectrum, 9(1), 404-421. https://doi.org/10.1128/Spectrum.00404-21
Dagne, E., Dobo, B., & Bedewi, Z. (2021). Antibacterial activity of papaya (Carica papaya) leaf and seed extracts against some selected gram-positive and gram-negative bacteria. Pharmacognosy Journal, 13(6s), 1727–1733. https://doi.org/10.5530/pj.2021.13.223
Dogan, A., Otlu, S., Çelebi, Ö., Aksu Kilicle, P., Gulmez Saglam, A., Dogan, A. N. C., & Mutlu, N. (2017). An investigation of antibacterial effects of steroids. Turkish Journal of Veterinary and Animal Sciences, 41, 302–305. https://doi.org/10.3906/vet-1510-24
Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., & Suleman, S. (2023). Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia. Journal of Experimental Pharmacology, 15, 51–62. https://doi.org/10.2147/JEP.S379805
Eshamah, H., Han, I., Naas, H., Rieck, J., & Dawson, P. (2013). Bactericidal effects of natural tenderizing enzymes on Escherichia coli and Listeria monocytogenes. Journal of Food Research, 2(1), 8. https://doi.org/10.5539/jfr.v2n1p8
Fazly Bazzaz, B. S., Khameneh, B., Zahedian Ostad, M. R., & Hosseinzadeh, H. (2018). In vitro evaluation of antibacterial activity of verbascoside, lemon verbena extract and caffeine in combination with gentamicin against drug-resistant Staphylococcus aureus and Escherichia coli clinical isolates. Avicenna Journal of Phytomedicine, 8(3), 246–253.
Gelband, H., Miller-petrie, M., Pant, S., Gandra, S., Levinson, J., Barter, D., White, A., & Laxminarayan, R. (2015). The State of the World’s Antibiotics 2015. Wound Healing Southern Africa, 8(2), 30–34.
Gopalraaj, J. & Velayudhannair, K. (2024). A comparative study of nutrient composition, proteolytic activity, phytochemical profiles, vitamin C content, and antioxidant properties in the peels of selected perennial fruits. Agricultural Research, 13. https://doi.org/10.1007/s40003-024-00798-4
Hadi Hameed, I., Mohammad, J., & Jihadi Mohammed, G. (2016). Antibacterial, antifungal activity and chemical analysis of Punica granatum (Pomegranate peel) using GC-MS and FTIR spectroscopy. International Journal of Pharmacognosy and Phytochemical Research, 8(3), 480–494.
Hanafy, S. M., Abd El-Shafea, Y. M., Saleh, W. D., & Fathy, H. M. (2021). Chemical profiling, in vitro antimicrobial and antioxidant activities of pomegranate, orange and banana peel-extracts against pathogenic microorganisms. Journal of Genetic Engineering and Biotechnology, 19(1), 80. https://doi.org/10.1186/s43141-021-00151-0
Harborne, J. B. (1973). Phytochemical Methods. Chapman and Hall Ltd.
Hikal, W. M., Mahmoud, A. A., Said-Al Ahl, H. A. H., Bratovcic, A., Tkachenko, K. G., Kačániová, M., & Rodriguez, R. M. (2021). Pineapple (Ananas comosus L. Merr.), waste streams, characterisation and valorisation: An overview. Open Journal of Ecology, 11(9), 610–634. https://doi.org/10.4236/oje.2021.119039
Huang, W., Wang, Y., Tian, W., Cui, X., Tu, P., Li, J., Shi, S., & Liu, X. (2022). Biosynthesis investigations of terpenoid, alkaloid, and flavonoid antimicrobial agents derived from medicinal plants. Antibiotics, 11(10), 1380. https://doi.org/10.3390/antibiotics11101380
Irawan, C., F, F., H, H., Sulistiawaty, L., & Sukiman, M. (2017). Volatile compound analysis using GC-MS phytochemical screening and antioxidant activities of the husk of “Julang-Jaling” (Archidendron bubalinum (Jack) I.C Nielsen) from Lampung, Indonesia. Pharmacognosy Journal, 10(1), 92–98. https://doi.org/10.5530/pj.2018.1.17
Iwasaki, T., Uchiyama, R., & Nosaka, K. (2023). Difference in anti-microbial activity of propan-1,3-diol and propylene glycol. Chemical and Pharmaceutical Bulletin, 71(1), c22-00625. https://doi.org/10.1248/cpb.c22-00625
Jain, P. (2011). Antibacterial and antioxidant activities of local seeded banana fruits. African Journal of Pharmacy and Pharmacology, 5(11), 1398–1403. https://doi.org/10.5897/AJPP11.294
Jeon, Y. A., Chung, S. W., Kim, S. C., & Lee, Y. J. (2022). Comprehensive assessment of antioxidant and anti-inflammatory properties of papaya extracts. Foods (Basel, Switzerland), 11(20), 3211. https://doi.org/10.3390/foods11203211
Jones, S. F. A. (1996). Herbs - useful plants. Their role in history and today. European Journal of Gastroenterology & Hepatology, 8(12), 1227–1231. https://doi.org/10.1097/00042737-199612000-00018
Khameneh, B., Iranshahy, M., Soheili, V., & Fazly Bazzaz, B. S. (2019). Review on plant antimicrobials: A mechanistic viewpoint. Antimicrobial Resistance & Infection Control, 8(1), 118. https://doi.org/10.1186/s13756-019-0559-6
Křen, V., & Řezanka, T. (2008). Sweet antibiotics – The role of glycosidic residues in antibiotic and antitumor activity and their randomization. FEMS Microbiology Reviews, 32(5), 858–889. https://doi.org/10.1111/j.1574-6976.2008.00124.x
Lerminiaux, N. A., & Cameron, A. D. S. (2019). Horizontal transfer of antibiotic resistance genes in clinical environments. Canadian Journal of Microbiology, 65(1), 34–44. https://doi.org/10.1139/cjm-2018-0275
Martin, K. W. (2003). Herbal medicines for treatment of bacterial infections: A review of controlled clinical trials. Journal of Antimicrobial Chemotherapy, 51(2), 241–246. https://doi.org/10.1093/jac/dkg087
Meena, L., Sengar, A. S., Neog, R., & Sunil, C. K. (2022). Pineapple processing waste (PPW): bioactive compounds, their extraction, and utilisation: a review. Journal of Food Science and Technology, 59(11), 4152–4164. https://doi.org/10.1007/s13197-021-05271-6
Mishra, V., Balomajumder, C., & Agarwal, V. K. (2010). Biosorption of Zn (II) onto the surface of non-living biomasses: A comparative study of adsorbent particle size and removal capacity of three different biomasses. Water, Air, & Soil Pollution, 211(1–4), 489–500. https://doi.org/10.1007/s11270-009-0317-0
Mo, Y., Ma, J., Gao, W., Zhang, L., Li, J., Li, J., & Zang, J. (2022). Pomegranate peel as a source of bioactive compounds: A mini review on their physiological functions. Frontiers in Nutrition, 9, 887113. https://doi.org/10.3389/fnut.2022.887113
Naksing, T., Teeka, J., Rattanavichai, W., Pongthai, P., Kaewpa, D., & Areesirisuk, A. (2021). Determination of bioactive compounds, antimicrobial activity, and the phytochemistry of the organic banana peel in Thailand. Bioscience Journal, 37, e37024. https://doi.org/10.14393/BJ-v37n0a2021-56306
Neglo, D., Tettey, C. O., Essuman, E. K., Kortei, N. K., Boakye, A. A., Hunkpe, G., Amarh, F., Kwashie, P., & Devi, W. S. (2021). Comparative antioxidant and antimicrobial activities of the peels, rind, pulp and seeds of watermelon (Citrullus lanatus) fruit. Scientific African, 11, e00582. https://doi.org/10.1016/j.sciaf.2020.e00582
Nozohour, Y., Golmohammadi, R., Mirnejad, R., & Fartashvand, M. (2018). Antibacterial activity of pomegranate (Punica granatum L.) seed and peel alcoholic extracts on Staphylococcus aureus and Pseudomonas aeruginosa isolated from health centers. Journal of Applied Biotechnology Reports, 5(1), 32–36. https://doi.org/10.29252/JABR.01.01.06
Okoh, M. E., Obadiah, H. I., & Aiyamenkhue, J. (2019). Antimicrobial activities of pineapple peel (Ananas comosus) extract on selected microbes. Biological Reports, 4(10), 0–11.
Ramadani, A. H., Karima, R., & Ningrum, R. S. (2022). Antibacterial activity of pineapple peel (Ananas comosus) eco-enzyme against acne bacteria (Staphylococcus aureus and Prapionibacterium acnes). Indonesian Journal of Chemical Research, 9(3), 201–207.
Rashiya, N., Padmini, N., Ajilda, A. A. K., Prabakaran, P., Durgadevi, R., Veera Ravi, A., Ghosh, S., Sivakumar, N., & Selvakumar, G. (2021). Inhibition of biofilm formation and quorum sensing mediated virulence in Pseudomonas aeruginosa by marine sponge symbiont Brevibacterium casei strain Alu 1. Microbial Pathogenesis, 150, 104693. https://doi.org/10.1016/j.micpath.2020.104693
Romasi, E., Karina, J. K., & Parhusip, A. J. (2013). Antibacterial activity of papaya leaf extracts against pathogenic bacteria. Makara Journal of Technology, 15(2), 173. https://doi.org/10.7454/mst.v15i2.936
Sajayan, A., Ravindran, A., Selvin, J., Ragothaman, P., & Seghal Kiran, G. (2023). An antimicrobial metabolite n- hexadecenoic acid from marine sponge-associated bacteria Bacillus subtilis effectively inhibited biofilm forming multidrug-resistant P. aeruginosa. Biofouling, 39(5), 502–515. https://doi.org/10.1080/08927014.2023.2232722
Saleem, M., & Saeed, M. T. (2020). Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. Journal of King Saud University - Science, 32(1), 805–810. https://doi.org/10.1016/j.jksus.2019.02.013
Santajit, S., & Indrawattana, N. (2016). Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Research International, 2016, 1–8. https://doi.org/10.1155/2016/2475067
Sharma, A., Bachheti, A., Sharma, P., Bachheti, R. K., & Husen, A. (2020). Phytochemistry, pharmacological activities, nanoparticle fabrication, commercial products and waste utilization of Carica papaya L.: A comprehensive review. Current Research in Biotechnology, 2, 145–160. https://doi.org/10.1016/j.crbiot.2020.11.001
Siddique, S., Nawaz, S., Muhammad, F., Akhtar, B., & Aslam, B. (2018). Phytochemical screening and in-vitro evaluation of pharmacological activities of peels of Musa sapientum and Carica papaya fruit. Natural Product Research, 32(11), 1333–1336. https://doi.org/10.1080/14786419.2017.1342089
Singh, S. P., Kumar, S., Mathan, S. V., Tomar, M. S., Singh, R. K., Verma, P. K., Kumar, A., Kumar, S., Singh, R. P., & Acharya, A. (2020). Therapeutic application of Carica papaya leaf extract in the management of human diseases. DARU Journal of Pharmaceutical Sciences, 28(2), 735–744. https://doi.org/10.1007/s40199-020-00348-7
Sirajudin, Z. N. M., Ahmed, Q. U., Chowdhury, A. J. K., Kamarudin, E. Z., & Khan, A. V. (2014). Antimicrobial Activity of Banana (Musa paradisiaca L.) Peels against Food Borne Pathogenic Microbes. Journal of Pure and Applied Microbiology, 8(5), 3627–3639.
Sweidan, N., Abu Rayyan, W., Mahmoud, I., & Ali, L. (2023). Phytochemical analysis, antioxidant, and antimicrobial activities of Jordanian pomegranate peels. PLOS ONE, 18(11), e0295129. https://doi.org/10.1371/journal.pone.0295129
World Health Organization. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics.
Zaki ibrahim, M., Farag, T., Mohamedin, A., Bedir El-bana, M., & Ali Saber, W. E. (2022). Antibacterial activity of fruit peels extracts against pathogenic bacteria. Alfarama Journal of Basic & Applied Sciences, 3(2), 230–238. https://doi.org/10.21608/ajbas.2022.127957.1094
Zhang, Y., Liao, J., & Qi, J. (2020). Functional and structural properties of dietary fiber from citrus peel affected by the alkali combined with high-speed homogenization treatment. LWT - Food Science and Technology, 128, 109397. https://doi.org/10.1016/j.lwt.2020.109397

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)