A study on Fourier transform infrared (FTIR) spectroscopy for polygalacturonase production by four fungal strains from mangrove soils Krishna district, Andhra Pradesh
Article Main
Abstract
Mangrove ecosystems are rich sources of diverse microbial communities, including fungi capable of producing industrially
significant enzymes such as polygalacturonase. Identifying potent fungal strains with high enzymatic activity is crucial for
biotechnological applications. This study aimed to isolate, identify, and characterize fungal strains from mangrove soils in Gilakaladhindi and Malakayalanka, Krishna District, with a focus on their polygalacturonase production potential. A total of 57 fungal strains were isolated from soil samples using serial dilution and pectin agar plating. The strain exhibiting the highest
polygalacturonase activity was selected for further study. Identification of the potent strains was performed through 18S rRNA sequencing, and the sequences were deposited in the NCBI GenBank with accession numbers MK192017, MG271916, KU613360, and KU613362. Fourier Transform Infrared (FT-IR) spectroscopy was conducted to analyze the structural composition of the enzyme, identifying functional groups responsible for its activity. Four fungal strains Aspergillus nomius, Aspergillus terreus, Penicillium citrinum, and Penicillium griseofulvum were confirmed as potent polygalacturonase producers. Fourier Transform Infrared Spectroscopy (FT-IR) analysis detected hydroxyl, carboxyl, acetyl, and pyruvyl groups, indicating the
presence of essential biochemical components. The chemical composition of polygalacturonase consisted primarily of neutral sugars, uronic acids, and proteins. These findings provide valuable insights into fungal polygalacturonase production and its potential applications in various industrial processes.
Article Details
Article Details
Aspergillusnomius, Fourier Transform infrared spectroscopy (FTIR), Mangrove, Polygalacturonase, Uronic acid
Adina, C. H. I. Ş., Florinela, F. E. T. E. A., Abdelmoumen, T. A. O. U. T. A. O. U. & Carmen, S. (2010). Application of FTIR spectroscopy for a rapid determination of some hydrolytic enzymes activity on sea buckthorn substrate. Romanian Biotechnological Letters, 15(6), 5738-5744.
Anuradha, K., Padma, P. N., Venkateshwar, S. & Reddy, G. (2014). Selection of nutrients for polygalacturonase production by Aspergillus awamori MTCC 9166 using Plackett-Burman design. Indian Journal of Biotechnology,13(4):502-507.http://nopr.niscpr.res.in/handle/123456789/30477.
Balabanova, L., Slepchenko, L., Son, O. &Tekutyeva, L. (2018). Biotechnology potential of marine fungi degrading plant and algae polymeric substrates. Frontiers in Microbiology, 9, 1527.https://doi.org/10.3389/fmicb.2018.01527
Be Miller, J.N. 1986. An introduction to pectins: Structure and properties. In: Fishman, M.L., Jem, J.J. (Eds.), Chemistry and functions of pectins, ACS Symposium Series 310. American Chemical Society, Washington, DC.doi:10.1021/bk-1986-0310.ch001.
Bentouhami, N. E., Asehraou, A., Mechri, S., Hasnaoui, I., Moumnassi, S., Yahyaoui, M. I. & Jaouadi, B. (2024). Purification and biochemical characterization of a novel thermostable endo-polygalacturonase from Aspergillus niger strain HO32 and its suitability for clarification of orange juice. Process Biochemistry.https://doi.org/10.1016/j.procbio.2024.06.013
Hoa, B. T. & Hung, P. V. (2013). Optimization of nutritional composition and fermentation conditions for cellulase and pectinase production by Aspergillus oryzae using response surface methodology. International Food Research Journal, 20(6), 3269.
Koser, S., Anwar, Z., Iqbal, Z., Anjum, A., Aqil, T., Mehmood, S. & Irshad, M. (2014). Utilization of Aspergillus oryzae to produce pectin lyase from various agro-industrial residues. Journal of Radiation Research and Applied Sciences, 7(3), 327-332.https://doi.org/10.1016/j.jrras.2014.05.001
Kumar, A., Dhiman, S., Krishan, B., Samtiya, M., Kumari, A., Pathak, N., ... & Dhewa, T. (2024). Microbial enzymes and major applications in the food industry: a concise review. Food Production, Processing and Nutrition, 6(1), 85.https://doi.org/10.1186/s43014-024-00261-5
Kusuma, M. P. & Reddy, D. S. R. (2014). Purification and characterization of polygalacturonase using isolated Bacillus subtilis C4. Research Journal of Microbiology, 9(2), 95. DOI:10.3923/jm.2014.95.103
Manrique, G. D. & Lajolo, F. M. (2002). FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biology and Technology, 25(1), 99-107.DOI:10.1016/S0925-5214(01)00160-0
Hoondal, G., Tiwari, R., Tewari, R., Dahiya, N. B. Q. K. & Beg, Q. (2002). Microbial alkaline pectinases and their industrial applications: a review. Applied Microbiology and Biotechnology, 59, 409-418.DOI: 10.1007/s00253-002-1061-1
Mondal, S., Halder, S. K. & Mondal, K. C. (2024). Recombinant fungal pectinase and their role towards fostering modern agriculture. In Entrepreneurship with Microorganisms (pp. 405-418). Academic Press. DOI:10.1016/B978-0-443-19049-0.00003-7
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. https://doi.org/10.1021/ac60147a030
Robbertse, B. & Tatusova, T. (2011). Fungal genome resources at NCBI. Mycology, 2(3), 142–160. https://doi.org/10.1080/21501203.2011.584576
Ognyanov, M., Dobreva, D. A., Milcheva, D. & Kratchanova, M. (2018). Isolation and Characterization of pectic polysaccharide fraction from in vitro suspension culture of fumaria officinalis L. International Journal of Polymer Science, 2018, Article ID 5705036. doi:10.1155/2018/5705036
Kamil, M. M., Hafez, S. S. & El-Masry, R. A. (2011). Application of FTIR spectroscopy for rapid and simultaneous quality determination of some fruit products. Nature and Science, 9(11), 21-32.
Manrique, G. D. & Lajolo, F. M. (2002). FT-IR Spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biology and Technology, 25(1), 99-107. doi:10.1016/S0925-5214(01)00163-2.
Patil, S. R. & Dayanand, A. (2006). Exploration of regional agrowastes for the production of pectinase by Aspergillus niger. Food Technology & Biotechnology, 44(2).
Kashyap, D. R., Vohra, P. K., Chopra, S. & Tewari, R. (2001). Applications of pectinases in the commercial sector: a review. Bioresource Technology, 77(3), 215-227. https://doi.org/10.1016/S0960-8524(00)00118-8.
Bussamara, R., Fuentefria, A. M., Oliveira, E. S., Broetto, L., Simcikova, M., Valente, P. & Schrank, A. (2010). Isolation of a lipase-secreting fungus from antarctic soil and characterization of its enzyme. Process Biochemistry, 45(3), 468–473. https://doi.org/10.1016/j.procbio.200 9.11.007.
Zhu, Y., Li, X., Yuan, X., Chen, J. & Wang, J. (2016). Extraction and characterization of pectin from sugar beet pulp. Carbohydrate Polymers, 142, 34–41. https://doi.org/10.1016/j.carbpol.2016.01.041.
Kaur, P., Satyanarayana, T. & Kapoor, M. (2014). Production, purification, and characterization of a thermostable pectinase from Bacillus pumilus dcsr1 and its application in juice clarification. Biocatalysis and Agricultural Biotechnology, 3(4), 89–94. https://doi.org/10.1016/j.bcab.2013.12.003.
Singh, R. K., Tiwari, S., Singh, M., Singh, R. & Mishra, S. K. (2018). Microbial enzymes: industrial progress in 21st century. Frontiers in Microbiology, 9, 2231. https://doi.org/10.3389/fmicb.2018.02231.
Manrique, G. D. & Lajolo, F. M. (2002). FTIR spectroscopy as a tool for measuring degree of methyl esterification in pectins from ripening papaya fruit. Postharvest Biology and Technology, 25(1), 99–107. https://doi.org/10.1016/S0925-5214(01)00191-0.
Adina, S., Petru, C., Elena, M. & Mihai, M. (2010). Structural characterization of pectinases using FTIR and their role in polysaccharide degradation. International Journal of Biological Macromolecules, 47(4), 509–513. https://doi.org/10.1016/j.ijbiomac.2010.07.012.
Majaliwa, N., Kibazohi, O. and Alminger, M., (2025). Fourier transform infrared spectroscopy (FTIR) probing on interactions of proteins with phenolic compounds in the East African highland banana pulp at different stages of banana juice extraction. International Journal of Biochemistry Research & Review, 34(2), pp.42-52.DOI: 10.9734/ijbcrr/2025/v34i2963
Singh, B., Soni, S. K., Mathur, P. & Garg, N. (2024). Microbial multienzyme viz., pectinase, cellulase and amylase production using fruit and vegetable waste as substrate—a review. Applied Microbiology, 4(3), 1232-1246.https://doi.org/10.3390/applmicrobiol4030084
Strycker, B. D., Han, Z., Duan, Z., Commer, B., Wang, K., Shaw, B. D., ... & Scully, M. O. (2020). Identification of toxic mold species through Raman spectroscopy of fungal conidia. PloS One, 15(11), e0242361.https://doi.org/10.1 371/journal.pone.0242361 .
Bhattacharyya, R., Mukhopadhyay, D., Nagarakshita, V. K., Bhattacharya, S. & Das, A. (2021). Thermostable and organic solvent-tolerant acid pectinase from Aspergillus terreus FP6: purification, characterization and evaluation of its phytopigment extraction potential. 3 Biotech, 11(11), 487.doi: 10.1007/s13205-021-03033-x .
Ahmed, T., Rana, M. R., Zzaman, W., Ara, R. & Aziz, M. G. (2021). Optimization of substrate composition for pectinase production from Satkara (Citrus macroptera) peel using Aspergillus niger-ATCC 1640 in solid-state fermentation. Heliyon, 7(10). doi: 10.1016/j.heliyon.2021.e0 8133 .
Koziol, A., Środa-Pomianek, K., Górniak, A., Wikiera, A., Cyprych, K. & Malik, M. (2022). Structural determination of pectins by spectroscopy methods. Coatings, 12(4), 546. https://doi.org/10.3390/coatings12040546
Pasieczna-Patkowska, S., Cichy, M. & Flieger, J. (2025). Application of fourier transform infrared (FTIR) spectroscopy in characterization of green synthesized nanoparticles. Molecules, 30(3), 684. https://doi.org/10.3390/molecules30030684

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)



