Article Main

Sadhna Maurya A. K. Chopra

Abstract

Continuously increasing carbon dioxide concentration is predicted to elevate the earth’s temperature. Elevated temperature is a severe problem for the cultivation of chickpea (Cicer arietinum L ). Therefore, the present study aimed to assess the effect of elevated carbon dioxide  (eCO2), elevated temperature (eT) and their interactive effect on yield and seed mineral nutrients of two genotypes, i.e., ICC 4958 (desi) and Flip 90-166 (kabuli) of chickpea (C. arietinum L ). The pot experiments were conducted in Open Top Chamber (OTC) for two consecutive years (2019-20 and 2020-21), along with the control placed in ambient natural conditions. The eCO2 (650±50 µl/l) and eT (~4oC) were given individually and in combination. The gaseous exchange was measured at the flowering stage. After harvesting, yield and its parameters, seed protein and  mineral nutrients were determined using standard methods.  Under eCO2, the photosynthesis of both genotypes was positively affected, ultimately converting to yield (8.8-17.5% increase). However, the effect was more prominent in ICC 4958 than Flip 90-166. Higher temperature only positively affected dry biomass, but that effect was not converted to yield; instead, a reduction occurred in yield (- 12.0 to -26.9% ). In combination with eCO2 and eT, the negative effect of high temperature was ameliorated by eCO2 on yield, augmenting the effects on seed nutrient reduction. Among the seed mineral nutrients, Na, K, Fe and Zn were most reduced (-20.3 to -30.0%) under interactive effect. The findings will help to enhance seed yield with improved mineral nutrient content of chickpea.


 

Article Details

Article Details

Keywords

Chickpea, Climate change, Elevated carbon dioxide (eCO2), Seed yield, Elevated temperature (eT)

References
AbdElgawad, H., Farfan-Vignolo, E. R., De Vos D. & Asard, H (2015) Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. Plant Sci 231:1-10. https://doi.org/10.1016/j.plantsci.2014.11.001
Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, cell & environment, 30(3), 258-270.  https://doi.org/10.1111/j.1365-3040.2007.01641.x.
Awasthi, R., Gaur, P., Turner, N. C., Vadez, V., Siddique, K. H., & Nayyar, H. (2017) Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance. Crop and Pasture Science, 68(9), 823-841. https://doi.org/10.1071/CP17028
Baidya, A., Pal, A. K., Ali, M. A., & Nath, R. (2021). High-temperature stress and the fate of pollen germination and yield in lentil (Lens culinaris Medikus). Indian Journal of Agricultural Research, 55(2), 144-150.
Bhargava, B. S., & Raghupathi, H. B. (1993). Analysis of plant materials for macro and micronutrients. Methods of analysis of soils, plants, water and fertilizers, 49-82.
Bhatia, A., Mina, U., Kumar, V., Tomer, R., Kumar, A., Chakrabarti, B., ... & Singh, B. (2021). Effect of elevated ozone and carbon dioxide interaction on growth, yield, nutrient content and wilt disease severity in chickpea grown in Northern India. Heliyon, 7(1).https://doi.org/10.1016/j.heliyon.2021.e06049
Chakrabarti, B., Singh, S. D., Kumar, V., Harit, R. C., & Misra, S. (2013). Growth and yield response of wheat and chickpea crops under high temperature. Indian Journal of Plant Physiology, 18, 7-14. https://doi.org/10.1007/s40502-013-0002-6
Chaturvedi, A. K., Bahuguna, R. N., Pal, M., Shah, D., Maurya, S., & Jagadish, K. S. (2017). Elevated CO2 and heat stress interactions affect grain yield, quality and mineral nutrient composition in rice under field conditions. Field Crops Research, 206, 149-157.https://doi.org/10.1016/j.fcr.2017.02.018
Crop-wise pulses global scenario: 2022 (2024). https://www.dpd.gov.in/i.%20%20Global%20(APY)%202022-23.pdf
Delahunty, A., Nuttall, J., Nicolas, M., & Brand, J. (2018). Response of lentil to high temperature under variable water supply and carbon dioxide enrichment. Crop and Pasture Science, 69(11), 1103-1112. https://doi.org/10.1071/CP18004
Devasirvatham, V., Gaur, P. M., Raju, T. N., Trethowan, R. M., & Tan, D. K. Y. (2015). Field response of chickpea (Cicer arietinum L.) to high temperature. Field Crops Research, 172, 59-71. https://doi.org/10.1016/j.fcr.2014.11.017.
Devasirvatham, V., Gaur, P. M., Mallikarjuna, N., Tokachichu, R. N., Trethowan, R. M., & Tan, D. K. (2012). Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Functional Plant Biology, 39(12), 1009-1018. https://doi.org/10.1071/FP12033
Devi, P., Awasthi, R., Jha, U., Sharma, K. D., Prasad, P. V., Siddique, K. H., ... & Nayyar, H. (2023). Understanding the effect of heat stress during seed filling on nutritional composition and seed yield in chickpea (Cicer arietinum L.). Scientific Reports, 13(1), 15450.
Dong, S., & Beckles, D. M. (2019). Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. Journal of plant physiology, 234, 80-93. https://doi.org/10.1016/j.jplph.2019.01.007
Egli, D. B., TeKrony, D. M., Heitholt, J. J., & Rupe, J. (2005). Air temperature during seed filling and soybean seed germination and vigor. Crop science, 45(4), 1329-1335. https://doi.org/10.2135/cropsci2004.0029.
Farooq, M., Nadeem, F., Gogoi, N., Ullah, A., Alghamdi, S. S., Nayyar, H., & Siddique, K. H. (2017). Heat stress in grain legumes during reproductive and grain-filling phases. Crop and Pasture Science, 68(11), 985-1005.https://doi.org/10.1071/CP17012.
Gaur, P. M., Samineni, S., Thudi, M., Tripathi, S., Sajja, S. B., Jayalakshmi, V., ... & Dixit, G. P. (2019). Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum L.). Plant Breeding 138(4): 389-400. https://doi.org/10.1111/pbr.12641.
Guo, L., Yu, Z., Li, Y., Xie, Z., Wang, G., Liu, X., ... & Jin, J. (2022). Plant phosphorus acquisition links to phosphorus transformation in the rhizospheres of soybean and rice grown under CO2 and temperature co-elevation. Science of the Total Environment, 823, 153558.
Hao, X., Gao, J., Han, X., Ma, Z., Merchant, A., Ju, H., ... & Lin, E. (2014). Effects of open-air elevated atmospheric CO2 concentration on yield quality of soybean (Glycine max (L.) Merr). Agriculture, ecosystems & environment 192: 80-84. https://doi.org/10.1016/j.agee.2014.04.002
IPCC (2007): Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate (Cambridge Cambridge, United Kingdom and New York, NY, USA) ed M L Change et al., (Cambridge University Press).
IPCC (2014): Summary for policymakers In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Cambridge, United Kingdom and New York, NY, USA) ed C B Field et al. (Cambridge University Press): 1–32.
Jha, U. C., Chaturvedi, S. K., Bohra, A., Basu, P. S., Khan, M. S., & Barh, D. (2014). Abiotic stresses, constraints and improvement strategies in chickpea. Plant Breeding, 133(2), 163-178. https://doi.org/10.1111/pbr.12150.
Jin, J., Armstrong, R., & Tang, C. (2019). Impact of elevated CO2 on grain nutrient concentration varies with crops and soils–A long-term FACE study. Science of the Total Environment 651: 2641-2647. https://doi.org/10.1016/j.scitotenv.2018.10.170.
Jin, J., Lauricella, D., Armstrong, R., Sale, P., & Tang, C. (2015). Phosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisol.  Annals of Botany 116(6): 975-985. https://doi.org/10.1093/aob/mcu209
Juliano BO (1993). Rice in human nutrition (No. 26) Int. Rice Res. Inst ( https://books.google.co.in).ISSN 1014-3181.
Jumrani, K., & Bhatia, V. S. (2014). Impact of elevated temperatures on growth and yield of chickpea (Cicer arietinum L.). Field Crops Research 164:90-97. https://doi.org/10.1016/j.fcr.2014.06.003
Jumrani, K., Bhatia, V. S., & Pandey, G. P. (2017). Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean. Photosynthesis Research, 131(3), 333-350. https://doi.org/10.1007/s11120-016-0326-y.
Krishnamurthy, L., Gaur, P. M., Basu, P. S., Chaturvedi, S. K., Tripathi, S., Vadez, V., ... & Gowda, C. L. L. (2011). Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. (Cicer arietinum L.) germplasm. Plant Genetic Resources 9(1): 59-69. https://doi.org/10.1017/S1479262110000407.
Kumar, P., Yadav, S. & Singh, M.P. Possible involvement of xanthophyll cycle pigments in heat tolerance of chickpea (Cicer arietinum L.). Physiol Mol Biol Plants 26, 1773–1785 (2020). https://doi.org/10.1007/s12298-020-00870-7
Lamichaney, A., Tewari, K., Basu, P. S., Katiyar, P. K., & Singh, N. P. (2021). Effect of elevated carbon-dioxide on plant growth, physiology, yield and seed quality of chickpea (Cicer arietinum L.) in Indo-Gangetic plains. Physiology and Molecular Biology of Plants 27(2):251-263. https://doi.org/10.1007/s12298-021-00928-0
Li, Y., Yu, Z., Jin, J., Zhang, Q., Wang, G., Liu, C., ... & Liu, X. (2018). Impact of elevated CO2 on seed quality of soybean at the fresh edible and mature stages. Frontiers in Plant Science 9: 1413. https://doi.org/10.3389/fpls.2018.01413
Liu, S., Waqas, M. A., Wang, S. H., Xiong, X. Y., & Wan, Y. F. (2017). Effects of increased levels of atmospheric CO2 and high temperatures on rice growth and quality. PLoS One 12(11):e0187724. https://doi.org/10.1371/journal.pone.0187724
Mishra, A. K., & Agrawal, S. B. (2014). Cultivar Specific Response of CO2 Fertilization on Two Tropical Mung Bean (V igna radiata L.) Cultivars: ROS Generation, Antioxidant Status, Physiology, Growth, Yield and Seed Quality. Journal of agronomy and crop science. 200(4):273-89.
Mourtzinis, S., Gaspar, A. P., Naeve, S. L., & Conley, S. P. (2017). Planting date, maturity, and temperature effects on soybean seed yield and composition. Agronomy Journal 109(5): 2040-2049. https://doi.org/10.2134/agronj2017.05.0247
Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D., Bloom, A. J., ... & Usui, Y. (2014). Increasing CO2 threatens human nutrition. Nature 510(7503):139-142. https://doi.org/10.1038/nature13179.
Nakagawa, A. C., Ario, N., Tomita, Y., Tanaka, S., Murayama, N., Mizuta, C., ... & Ishibashi, Y. (2020). High temperature during soybean seed development differentially alters lipid and protein metabolism. Plant Production Science 23(4): 504-512 https://doi.org/10.1080/1 343943X.2020.1742581
Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G., & Lobell, D. B. (2021). Anthropogenic climate change has slowed global agricultural productivity growth. Nature Climate Change 11(4): 306-312. https://doi.org/10.1038/s41558-021-01000-1
Pal, M., Talawar, S., Deshmukh, P. S., Vishwanathan, C., Khetarpal, S., Kumar, P., & Luthria, D. (2008). Growth and yield of chickpea under elevated carbon dioxide concentration. Ind. J. Plant Physiol, 13(4), 367-374
Palacios, C. J., Grandis, A., Carvalho, V. J., Salatino, A., & Buckeridge, M. S. (2019). Isolated and combined effects of elevated CO2 and high temperature on the whole-plant biomass and the chemical composition of soybean seeds. Food Chemistry 275: 610-617. https://doi.org/10.1016/j.foodchem.2018.09.052
Prasad, P. V., Boote, K. J., Allen Jr, L. H., & Thomas, J. M. (2002). Effects of elevated temperature and carbon dioxide on seed‐set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biology 8(8): 710-721. https://doi.org/10.1046/j.1365-2486.2002.00508.x
Purushothaman, R., Upadhyaya, H. D., Gaur, P. M., Gowda, C. L. L., & Krishnamurthy, L. (2014). Kabuli and desi chickpeas differ in their requirement for reproductive duration. Field Crops Research 163: 24-31. https://doi.org/10.1016/j.fcr.2014.04.006
Rai, P., Chaturvedi, A. K., Shah, D., & Pal, M. (2016). Impact of elevated CO2 on high temperature induced effects in grain yield of chickpea (Cicer arietinum). Indian J Agric Sci. 86(3):414-7.
Rawal V, Navarro DK (2019). The global economy of pulses. (Book) https://openknowledge.fao.org/handle/20.500.14283/I7108EN
Saha, S., Chakraborty, D., Sehgal, V. K., & Pal, M. (2015a). Potential impact of rising atmospheric CO2 on quality of grains in chickpea (Cicer arietinum L.). Food chemistry. 187:431-6. https://doi.org/10.1016/j.foodchem.2 015.04.116
Saha, S., Sehgal, V. K., Chakraborty, D., & Pal, M. (2015b). Atmospheric carbon dioxide enrichment induced modifications in canopy radiation utilization, growth and yield of chickpea [Cicer arietinum L.)]. Agricultural and Forest Meteorology 202: 102-111. https://doi.org/10.1016/j.agrformet.2014.12.004
Sehgal, A., Sita, K., Bhandari, K., Kumar, S., Kumar, J., Vara Prasad, P. V., ... & Nayyar, H. (2019). Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil  (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant, cell & environment 42(1): 198-211.https://doi.org/10.1111/pce.13328
Singh, S. D., Chakrabarti, B., Muralikrishna, K. S., Chaturvedi, A. K., Kumar, V., Mishra, S., & Harit, R. (2013). Yield response of important field crops to elevated air temperature and CO2. Indian Journal of Agricultural Sciences, 83(10), 1009-12.
Singh, R. N., Mukherjee, J., Sehgal, V. K., Krishnan, P., Das, D. K., Dhakar, R. K., & Bhatia, A. (2021). Interactive effect of elevated tropospheric ozone and carbon dioxide on radiation utilisation, growth and yield of chickpea  (Cicer arietinum L.). International Journal of Biometeorology. 65(11):1939-52. https://doi.org/10.1007/s00484-021-02150-9
Smith, M. R., & Myers, S. S. (2018). Impact of anthropogenic CO2 emissions on global human nutrition. Nature Climate Change. 8(9):834-9. https://doi.org/10.1038/s41558-018-0253-3
Soba, D., Shu, T., Runion, G. B., Prior, S. A., Fritschi, F. B., Aranjuelo, I., & Sanz-Saez, A. (2020). Effects of elevated [CO2] on photosynthesis and seed yield parameters in two soybean genotypes with contrasting water use efficiency. Environmental and Experimental Botany, 178, 104154. https://doi.org/10.1016/j.envexpbot.2020.104154.
Suárez, J. C., Urban, M. O., Contreras, A. T., Noriega, J. E., Deva, C., Beebe, S. E., ... & Rao, I. M. (2021). Water use, leaf cooling and carbon assimilation efficiency of heat resistant common beans evaluated in Western Amazonia. Frontiers in Plant Science.12:644010. doi: 10.3389/fpls.2021.644010
Thomey, M. L., Slattery, R. A., Köhler, I. H., Bernacchi, C. J., & Ort, D. R. (2019). Yield response of field‐grown soybean exposed to heat waves under current and elevated [CO2]. Global Change Biology 25(12): 4352-4368. https://doi.org/10.1111/gcb.14796
Vanaja, M., Sarkar, B., Sathish, P., Jyothi Lakshmi, N., Yadav, S. K., Mohan, C., ... & Singh, V. K. (2024). Elevated CO2 ameliorates the high temperature stress effects on physio-biochemical, growth, yield traits of maize hybrids. Scientific Reports. 5;14(1):2928.
Vineeth, T. V., Kumar, P., Yadav, S., & Pal, M. (2015). Optimization of bio-regulators dose based on photosynthetic and yield performance of chickpea (Cicer arietinum L.) genotypes. Indian Journal of Plant Physiology. 20(2):177-81. https://doi.org/10.1007/s40502-015-0150-y
Wang, W., Cai, C., He, J., Gu, J., Zhu, G., Zhang, W., ... & Liu, G. (2020). Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions. Field Crops Research. 248:107605.
Wardlaw, I. F., & Moncur, L. J. F. P. B. (1995). The response of wheat to high temperature following anthesis. I. The rate and duration of kernel filling. Functional Plant Biology. 22(3):391-7. https://doi.org/10.1071/PP9950391
Yuan, M., Cai, C., Wang, X., Li, G., Wu, G., Wang, J., ... & Sun, Y. (2021). Warm air temperatures increase photosynthetic acclimation to elevated CO2 concentrations in rice under field conditions. Field Crops Research. 1;262:108036. https://doi.org/10.1016/j.fcr.2020.108036
Zhu, X. F., Zhang, X. L., Dong, X. Y., & Shen, R. F. (2019). Carbon dioxide improves phosphorus nutrition by facilitating the remobilization of phosphorus from the shoot cell wall in rice  (Oryza sativa). Frontiers in plant science. 0:665.  https://doi.org/10.3389/fpls.2019.00665.
Section
Research Articles

How to Cite

A study on elevated carbon dioxide (eCO2), elevated temperature (eT) and their interactive effect on chickpea (Cicer arietinum L.) yield and seed mineral nutrients. (2024). Journal of Applied and Natural Science, 16(4), 1856-1866. https://doi.org/10.31018/jans.v16i4.6162