Article Main

M George Vigi Hari N

Abstract

The tropical fruit species Dimocarpus longan (Longan), Litchi chinensis (Lychee), Nephelium lappaceum (Rambutan), and Nephelium ramboutan-ake (Pulasan) demonstrate significant ecological adaptability, enabling their cultivation under diverse tropical conditions.  This study uses light and scanning electron microscopy to investigate the adaptive significance of leaf micromorphological, anatomical, and histochemical traits in these species. Fresh leaf samples were collected from cultivated habitats in Kerala, India, a tropical monsoon zone. Microscopic evaluations revealed a unique combination of evergreen and xerophytic traits. Evergreen features, including robust internal anatomy, extensive photosynthetic area, and well-developed vein vasculature, support adaptation to high light intensity and fluctuating humidity. Xerophytic characteristics, such as thick abaxial and adaxial cuticles, stomatal index of less than three, and compartmentalised photosynthetic areas, enhance drought resilience. Defensive adaptations like papillated cuticles, trichomes, crystals, phenolic compounds, mucilage, and domatia mitigate herbivory, UV stress, and thermal load. These traits collectively ensure survival in challenging tropical environments. The findings underline the critical role of leaf anatomy in the ecological adaptability and economic viability of these species, providing valuable insights for crop selection and cultivation strategies. Promoting such adaptive traits in tropical horticulture can enhance productivity while minimising environmental impact, contributing to sustainable agriculture and ecosystem stability.


 

Article Details

Article Details

Keywords

Cuticular papillae, Domatia, Heterobaric leaves, Tropical climate, Tropical trees

References
Ayala-Ramos, M. A., Montaño-Arias, S. A., Terrazas, T. & Grether R. (2024). Ecological implications of stomatal density and stomatal index in the adult stage of Mimosa L. (Leguminosae, Caesalpinioideae). Protoplasma, 261, 477–486. doi.org/10.1007/s00709-023-01909-8
Badria, A. F. & Aboelmaaty, S. W. (2019). Plant histochemistry: a versatile and indispensable tool in localization of gene expression, enzymes, cytokines, secondary metabolites and detection of plants infection and pollution. Acta Sci Pharm Sci. 3(7). doi: 10.31080/ASPS.2019.03.0318
Barbosa, M. A. M., Chitwood, D.H., Azevedo, A. A., Araújo, W.L., Ribeiro, D. M., Peres, L. E. & Zsögön, A. (2019). Bundle sheath extensions affect leaf structural and physiological plasticity in response to irradiance. Plant Cell Environ., 42(5):1575–1589. doi.org/10.1111/pce.13495
Beyschlag, W. & Eckstein, J. (2001). Towards a causal analysis of stomatal patchiness: the role of stomatal size variability and hydrological heterogeneity. Acta Oecologica. 22(3):161–173. doi.org/10.1016/S1146-609X(01)01110-9
Borrell, J., Dodsworth, S., Forest, F., Pérez-Escobar, O. A., Lee, M., Mattana, E. & Ballesteros, D. (2020). The climatic challenge: Which plants will people use in the next century? Environ. Exp. Bot. 170: 103872. doi.org/10.1016/j.envexpbot.2019.103872
Buerki, S., Callmander, M. W., Acevedo‐Rodriguez, P., Lowry, P. P., Munzinger, J., Bailey, P. & Baker, W. J. (2021). An updated infra‐familial classification of Sapindaceae based on targeted enrichment data. Am. J. Bot. 108(7):1234–1251. doi.org/10.1002/ajb2.1693
Crang, R., Lyons-Sobaski, S. & Wise, R. (2018). Plant anatomy: a concept-based approach to the structure of seed plants: Springer.
Dilcher, D. L. (1974). Approaches to the identification of angiosperm leaf remains. The botanical review. 40, p. 1–157. doi.org/10.1007/BF02860067
Domínguez, E., Heredia-Guerrero, J. A. & Heredia, A. (2017). The plant cuticle: old challenges, new perspectives. Exp Bot. Vol. 68, 5251–5255. UK: Oxford University Press. doi.org/10.1093/jxb/erx389
Evert, R. F. (2006). Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. New Jersey John Wiley & Sons.
Farfán, N., Padilla, V. & Luis P. (2020). Evolutionary ecology of plant-herbivore interaction. Switzerland: Springer.
Gepts, P. (2008). Tropical environments, biodiversity, and the origin of crops. In Genomics of tropical crop plants (pp. 1-20). New York, NY: Springer New York.
Goldstein, G., Santiago, L. S., Campanello, P. I., Avalos, G., Zhang, Y. J. & Villagra, M. (2016). Facing shortage or excessive light: How tropical and subtropical trees adjust their photosynthetic behaviour and life history traits to a dynamic forest environment. Tropical tree physiology: adaptations and responses in a changing environment, 319-336.
Goncharovska, I. & Iwona, S. (2023). Anatomical and morphological structure of the leaf of the genus Malus spp. Not Sci Biol. 15(1):11449–11449. doi.org/10.55779/nsb15111449
He, N., Li, Y., Liu, C., Xu, L., Li, M., Zhang, J. & Ye, Q. (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends Ecol Evo. 35(10):908–918. doi.org/10.1016/j.tree.2020.06.003
Liliane, Tandzi Ngoune, and Mutengwa Shelton Charles. "Factors affecting yield of crops." Agronomy-climate change & food security (2020): 9.
Liu, W., Zheng, L. & Qi, D. (2020). Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecol Evol. 10(15):8166–8175. doi.org/10.1002/ece3.6519
Marboh, E. (2020). Origin and Biological Diversity of Horticultural. Crops In: Peter, K V (ed). New Delhi: Brillion Publishing.
Metcalfe, C. R. & Chalk, L. (1950). Anatomy of the dicotyledons. Vols. 1&2.
Nishida, S., Tsukaya, H., Nagamasu, H. & Nozaki, M. (2006). A comparative study on the anatomy and development of different shapes of domatia in Cinnamomum camphora (Lauraceae). Ann. Bot. 97(4):601–610. doi.org/10.1093/aob/mcl009
Romero, G. Q. & Benson, W. W. (2004). Leaf domatia mediate mutualism between mites and a tropical tree. Oecologia. 140:609–616. doi.org/10.1007/s00442-004-1626-z
Sack, L. & Scoffoni, C. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol. 198(4):983–1000. doi.org/10.1111/nph.12253
Sack, L., Scoffoni, C., McKown, A. D., Frole, K., Rawls, M., Havran, J. C. & Tran, T. (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat. Commun. 3(1):837. doi.org/10.1038/ncomms1835
Schultz, J. (2005). The ecozones of the world. Vol. 252. Springer.
Silva, A. L. E., de Lima Terceiro, L. E., de Lima, M. F., Costa‐Silva, R., Dos Santos, E. A. & Agra, M. D. F. (2019). Leaf and stem micromorphology of Byrsonima sericea DC. by light and scanning electron microscopy. Microsc Res Tech., 83(3), 287-296. doi.org//10.1002/jemt.23412
Singh, J., Pandey, S., Lal, N. & Nath, V. (2023). Effect of spacing and training system on morpho-physiology, yield, and quality attributes of Litchi cv.‘Shahi’ Under the rectangular system of planting. Erwerbs-Obstbau. 65(3):501–507. doi.org/10.1007/s10341-023-00862-3
Sthapit, B. S., Rao, V. R. & Sthapit, S. S. (2012). Tropical fruit tree species and climate change. Bioversity International, New Delhi, India.
Somavilla, N. S., Kolb, R. M. & Rossatto, D. R. (2014). Leaf anatomical traits corroborate the leaf economic spectrum: a case study with deciduous forest tree species. Braz. J. Bot. 37:69–82. doi.org/10.1007/s10341-023-00862-3
Tindall, H. (1994). Sapindaceous fruits: botany and horticulture. Horti. Rev. Vol. 16-143-196.
Vigi, G. M. & Hari, N. (2022). Authentication of Harpullia arborea (Blanco) Radlk.-a traditional medicinal plant from India using microscopic techniques. J. Appl. Nat. Sci. 14(2):575–581. doi.org/10.31018/jans.v14i2.3456
Vishal, N., Patel, R. K., Srivastava, K., Amrendra K. & Pandey, S. D. (2018). "Potential exotic fruits for Indian climate. Progress Hortic. 50(1&2), 16-23. doi.org/16-23.10.5958/2249-5258.2018.00018.0
Wang, X., Shen, C., Meng, P., Tan, G. & Lv, L. (2021). Analysis and review of trichomes in plants. BMC Plant Biol. 21:1–11. doi.org/10.1186/s12870-021-02840-x
Webb, M. A. (1999). Cell-mediated crystallization of calcium oxalate in plants. The Plant Cell. 11(4):751–761. doi.org/10.2307/3870897

Section
Research Articles

How to Cite

Analysis of climate adaptability in four tropical fruit trees:  Longan (Dimocarpus longan Lour.), Lychee (Litchi chinensis Sonn.), Pulasan (Nephelium ramboutan-ake (Labill.) Leenh.) and Rambutan (Nephelium lappaceum L.) through leaf anatomy evaluation. (2025). Journal of Applied and Natural Science, 17(2), 530-536. https://doi.org/10.31018/jans.v17i2.6155