Article Main

Majid Ahmed Al-Bayati Mohammed Fadhil AboKsour Buthainah Mohammed Taha Nadheema Hammood Hussein Sarah Yahya Haider

Abstract

Antibiotic resistance poses a significant threat to public health, driven by misuse and overuse of antibiotics in healthcare and agriculture. Among Gram-negative bacteria, carbapenem-resistant Pseudomonas species are particularly worrisome due to their ability to harbor resistance genes such as blaOXA-48, blaDIM-1, and blaKPC1. The present study aimed to determine the prevalence of blaOXA-48, blaDIM-1, and blaKPC1 genes in Pseudomonas isolates from wastewater and clinical samples collected from two Baghdad hospitals. Sixty-nine (69) samples, including blood, urine, wounds, ear swabs, and wastewater, were cultured and subjected to morphological and biochemical analyses. Antibiotic susceptibility testing was conducted using the VITEK 2 system. Molecular analysis was conducted through the polymerase chain reaction (PCR) to detect the most common resistance genes (blaOXA-48, blaDIM-1, and blaKPC1). Out of sixty-nine samples, thirty-two Pseudomonas isolates were identified, with Pseudomonas aeruginosa accounting for 65.62% of isolates. Other isolates included P. putida (21.5%), P. sutzeri (21.5%), P. fluorescens (6.25%), and P. lutrola (3.13%). Antibiotic susceptibility testing revealed 31.25% of isolates were resistant to carbapenems, classifying them as multidrug-resistant (MDR). Polymerase chain reaction analysis demonstrated the presence of blaOXA-48 and blaDIM-1 genes in 15.62 and 6.25% of isolates, respectively, with one isolate harboring both genes. No blaKPC1 gene was detected. The present study highlights the alarming dissemination of carbapenem resistance genes in clinical and environmental settings, posing a significant challenge to effective treatment. Findings underscore the importance of molecular epidemiological surveillance to inform targeted interventions and mitigate the spread of resistance in resource-limited settings like Baghdad.


 

Article Details

Article Details

Keywords

Antibiotic resistance, Baghdad, blaDIM-1, blaKPC1, blaOXA-48, Carbapenem, Pseudomonas spp.

References
AboKsour, M.F. (2018). Presence of Extended-Spectrum β-Lactamases Genes in E. coli Isolated from Farm Workers in the South of London. Int J Pharma Quality Assurance, 9(1), 64-67. doi: 10.25258/ijpqa.v9i01.11361.
AboKsour, M.F., Al Marjani, M.F., & Rheima, A.M. (2024). Preparation and Effects of Manganese Oxide Nanoparticles Against Quinolone-Resistant Bacteria Isolated from Hospital Wastewater. Al-Rafidain J Med Sci, 6(2), 94-100. doi: https://doi.org/10.54133/ajms.v6i2.728.
Ahmed, B., Nesreen, H., Hanan, H., Omar, B., Mohd, A. K., & Khaled, A. (2023). Carbapenem-resistance worldwide: a call for action – correspondence. Ann Med Surgery, 85(3), 564–566. doi: 10.1097/MS9.00000 00000000262.
Al-Bayati, M. & Samarasinghe, S. (2019), April. Real-time qPCR analysis of genes expression in the carbapenem-resistant bacteria (Escherichia coli IMP-type and Klebsiella pneumoniae NDM-1) during biofilm formation. https://www.dora.dmu.ac.uk/handle/2086/17856.
AL-Bayati, M.A., Aboksour, M.F., Jaafar, F.N. (2024). Biofilm formation and gene expression in carbapenem-resistant Klebsiella pneumoniae OXA-48 under different growth conditions. International Journal of Design & Nature and Ecodynamics, Vol. 19, No. 6, pp. 2063-2069. https://doi.org/10.18280/ijdne.190622
Alraddadi, B.M., Heaphy, E.L.G., Aljishi, Y., Ahmed, W., Eljaaly, K., Al-Turkistani, H.H., Alshukairi, A.N., et al. (2022). Molecular epidemiology and outcome of carbapenem-resistant Enterobacterales in Saudi Arabia. BMC Infec Dis, (6), 222-254. doi: 10.1186/s12879-022-07507-y.
Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Nisar, M.A., Alvi, R.F., Aslam, M.A., et al. (2018). Antibiotic resistance: A rundown of a global crisis. Infect Drug Resist, 11, 1645–1658. doi: 10.2147/IDR.S173867.
Badr, A.A., Abbas, T., &AboKsour, M.F. (2022). Diagnosing Bacteria Samples Using Data Mining: Review study. 2022 5th International Conference on Engineering Technology and its Applications (IICETA), Al-Najaf, Iraq, 58-63. doi: 10.1109/IICETA54559.2022.9888705.
Djeffal, A., Kallel, M., Maameri, Z., & Boudabous, A. (2022). Antimicrobial Resistance in Pseudomonas aeruginosa: Prevalence, Mechanisms, and Therapeutic Strategies. Frontiers in Microbiology, 13, 804051. https://doi.org/10.3389/fmicb.2022.804051
Glen, K.A., & Lamont, I.L. (2021). β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. Pathogens, 10(12), 1638. doi: 10.3390/pathogens10121638.
Kazmierczak, K.M., Karlowsky, J.A., de Jonge, B.L.M., Stone, G.G., & Sahm, D.F. (2021). Epidemiology of Carbapenem Resistance Determinants Identified in Meropenem-NonsusceptibleEnterobacterales Collected as Part of a Global Surveillance Program. Antimicrob Agents Chemother, 65(7), e02000-20. doi: 10.1128/AAC.02000-20.
Khadim, M.M., & AL Marjani, M.F. (2019). Pyocyanin and Biofilm Formation in Pseudomonas aeruginosa Isolated from Burn Infections in Baghdad, Iraq. Jordan J Biolog Sci, 12(1), 31–35.
Loucif, L., Chelaghma, W., Bendjama, E., Cherak, Z., Khellaf, M., Khemri, A., & Rolain, J.M. (2022). Detection of blaOXA-48 and mcr-1 Genes in Escherichia coli Isolates from Pigeon (Columba livia) in Algeria. Microorganisms, 10(5), 975. doi: 10.3390/microorganisms10050975.
Manyi-Loh, C.E., Okoh, A.I., & Lues, R. (2023). Occurrence and Multidrug Resistance in Strains of Listeria monocytogenes Recovered from the Anaerobic Co-Digestion Sludge Contained in a Single Stage Steel Biodigester: Implications for Antimicrobial Stewardship. Microorganisms, 11(3), 725. doi: 10.3390/microorganisms11030725.
Moser, C., Jensen, P.Ø., Thomsen, K., Kolpen, M., Rybtke, M., Lauland, A.S., Trøstrup, H., & Tolker-Nielsen, T. (2021). Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front Immunol, 12, 625597. doi: 10.3389/fimmu.2021.625597.
Muhsin, F.K., AboKsour, M.F., & Hadi, S. (2023). Bioremediation by bacteria isolated from water contaminated with hydrocarbons. Revis Bionatura, 8(3), 94. doi.org/10.21931/RB/2023.08.03.94.
Muslim, S.N., Shatha, A.S., &Aboksour, M. (2013). Isolation and culture of Acinetobacter bumannii. WJPR, 2(5), 1254-1269.
Partridge, S.R., Kwong, S.M., Firth, N., & Jensen, S.O. (2018). Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microb Rev, 31, 88-107. doi: 10.1128/CMR.00088-17.
Potron, A., Poirel, L., & Nordmann, P. (2013). Characterization of blaOXA-48-like genes in carbapenem-resistant enterobacteria. Antimicrobial Agents and Chemotherapy, 57(11), 5866-5869. https://doi.org/10.1128/AAC.00961-13
Rheima, A.M., Al Marjani, M.F., Aboksour, M.F., & Hashim, S.M. (2021). Evaluation of Anti-Biofilm Formation Effect of Nickel Oxide Nanoparticles (NiO-NPs) Against Methicillin-Resistant Staphylococcus Aureus (MRSA). Inter J NanosciNanotechnol, 17(4), 221-230.
Robledo, I.E., Aquino, E.E., & Vázquez, G.J. (2011). Detection of the KPC gene in Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii during a PCR-based nosocomial surveillance study in Puerto Rico. Antimicrob Agents Chemother, 55(6), 968–2970. doi: 10.1128/AAC.01633-10.
Rossi, E., Ghoul, M., & La Rosa, R. (2022). Pseudomonas aeruginosa Pathogenesis: Virulence, Antibiotic Tolerance and Resistance, Stress Responses and Host-Pathogen Interactions. Frontiers in Cellular and Infection Microbiology, 12, Article 860314. https://doi.org/10.3389/fcimb.2022.860314.
Shahnaz, M., Sharma, S., Dev, D., & Prasad, D.N. (2020). Cultivation technology and antibacterial activity. Intl J Pharma Chem Anal, 7, 135-144.
Shibl, A., Al-agamy, M., Memish, Z., & Senok, A. (2013). The Emergence of OXA-48- and NDM-1-Positive Klebsiella Pneumoniae in Riyadh, Saudi Arabia. Int J Infec Dis, 17, 1130–1133. doi: 10.1016/j.ijid.2013.06.016.
Walsh, T. R., Gales, A. C., Laxminarayan, R., & Dodd, P. C. (2023). Antimicrobial resistance: addressing a global threat to humanity. PLOS Medicine, 20(6), e1004264. doi:10.1371/journal.pmed.1004264.
Woerther, P. L., Burdet, C., Chachaty, E., & Andremont, A. (2018). Impact of conjugative plasmids in the transmission of carbapenem-resistance genes in Acinetobacter spp. Antimicrobial Resistance & Infection Control, 7, 1-7. https://doi.org/10.1186/s13756-018-0341-7
Xue, L., Zhang, Y., Wu, Q., Wang, H., Lei, T., Xie, J., ... & Ding, Y. (2020). Prevalence, virulence, antimicrobial resistance, and molecular characterization of Pseudomonas aeruginosa isolates from drinking water in China. Frontiers in Microbiology, 11, 793. https://doi.org/10.3389/fmicb.2020.00793
Section
Research Articles

How to Cite

Prevalence of BlaOXA-48, BlaDIM-1, and BlaKPC1 genes in carbapenem-resistant Pseudomonas species isolated from wastewater and clinical samples from Baghdad hospitals. (2025). Journal of Applied and Natural Science, 17(1), 24-30. https://doi.org/10.31018/jans.v17i1.6129