Response to nitrogen management through different sources and modes on the productivity of quinoa (Chenopodium quinoa Willd) in the North Cauvery deltaic zones of Tamil Nadu
Article Main
Abstract
Intensive agriculture with mono-cropping leads to many losses in terms of soil fertility concerns. Similarly, the inclusion of quality protein and dietary fibre in food consumption is quite alarming due to the majority of health issues faced by human beings. However, several crops are on the list, and only a few crops, pseudo-cereal like quinoa, can survive in climate-resilient conditions with higher protein content in their grain. Though quinoa (Chenopodium quinoa Willd.) is a new emerging crop in India, the present study aimed to ascertain its productivity response for different sources and modes of nitrogen. The field experiments were conducted in farmers' fields in Sivapuri village, Cuddalore district of Tamil Nadu, from February to May 2022-23. The experiment was laid out in Randomized Block Design (RBD) with eight treatments and replicated thrice. The growth parameters and yield components of quinoa increased due to nano fertilizers sprayed under the vegetative and flowering stages. The results exposed that positive influence noticed on the growth and yield attributes such as Plant height (139.7), Leaf Area Index (LAI) (2.44), Dry Matter Production (1018.8 kg ha-1), Number of branches plant-1 (38.08) yield attributes such as panicle length (35.9) number of panicle plant-1 (8.69) number of grains panicle-1 (3182.5), grain yield 2655 kg ha-1 and stalk yield of 3331.8 g ha-1 in RDF (NF) + 0.5% N through Nano Urea (Foliar) imposed treatment (T8) over other combination of fertilizers sources and modes of treatments which added another platform to the beginners of quinoa growing farmers in north Cauvery deltaic zones of Tamil Nadu.
Article Details
Article Details
Foliar, Nano fertilizers, Nitrogen, Pseudo cereal, Quinoa, Yield
Adisa, I. O., Pullagurala,V.L.R., Peralta-Videa,J.R., Dimkpa, C.O., Elmer, W.H., Gardea-Torresdey, J. L. & White, J.C. 2019. Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environmental Science: Nano, 6(7): 2002-2030.
Alam S. I., Hammod H., Khan, F., Al Enazi, R. & Goktepe, I. 2020. Electrical conductivity, pH, organic matter and texture of selected soils around THE Qatar University campus. Res. Agric. Livest. Fish., 7 (3): 403- 409.
Al-juthery, I.H.W.A. & Saadoun, S. F. 2019. Fertilizer Use Efficiency of nano fertilizers of micronutrients foliar application on Jerusalem artichoke. Al- Qadisiyah Journal for Agriculture Sciences, 9(1): 156-164.
Banjara, T. R., Bohra, J. S., Kumar, S., Ram, A., & Pal, V. (2021). Diversification of rice-wheat cropping system improves growth, productivity and energetics of rice in the Indo-Gangetic Plains of India. Agric. Res. 10, 1–10. doi: 10.1007/s40003-020-00533-9
Davarpanah, S., Tehranifar, A., Davarynejad, G., Abadía, J. & Khorasani, R. 2016. Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci. Hortic., 210, 57–64.
Din, M. S. U., Mubeen, M., Hussain, S., Ahmad, A., Hussain, N., Ali, M. A., et al. (2022). “World nations priorities on climate change and food security,” in Building Climate Resilience in Agriculture (Cham: Springer), 365–384. doi: 10.1007/978-3-030-79408-8_22
Elavarasan, E., Ravikumar, C., Sudhagar Rao, G. B., Senthilvalavan, P. & Manivannan, R. 2021. Significance of Nano N, P, K and Zn SO4 fertilizers on soil fertility, nutrient uptake, and yield of rice production. Inter. Journal of Botany Studies, 6 (6):166-170.
Ghaffar, A., Habib, M. H. R., Ahmad, S., Ahmad, I., Khan, M. A., Hussain, J., et al. (2022). Adaptations in Cropping System and Pattern for Sustainable Crops Production under Climate Change Scenarios. (Boca Raton, FL: CRC Press), 10. doi: 10.1201/9781003286417-1
Gutiérrez, A. F., & Portugal, P. M. (2022). Estudio genómico de la Quinua (Chenopodium quinoa Willd): Técnicas de secuenciación e identificación genómica. Una revision. Genomic study of Quinoa (Chenopodium quinoa Willd): Sequencing techniques and genomic identification. A review. DOI: https://doi.org/10.53287/owrp5412ir44z.
Habib-ur-Rahman. M., Ahmad, A., Raza, A., Hasnain, M.U., Alharby, H.F., Alzahrani, Y.M., Bamagoos, A.A., Hakeem, K.R., Ahmad, S., Nasim, W., Ali, S., Mansour, F. E.L. & Sabagh, A. (2022). Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front. Plant Sci. 13:925548. doi: 10.3389/ fpls.2022.925548
Hongyan Mu., Sophia Xue., Qingrui Sun., John Shi., Danyang Zhang., Deda Wang. & Jianteng Wei. (2023). Research Progress of Quinoa Seeds (Chenopodium quinoa Willd.): Nutritional Components, Technological Treatment, and Application, Foods, 12(10), 2087; https://doi.org/10.3390/foods12102087
Jacobsen, S.E. (2003). The worldwide potential for quinoa (chenopodium quinoa
Mahapatra, D. M., Satapathy, K. C., & Panda, B. (2022). Biofertilizers and nanofertilizers for sustainable agriculture: phycoprospects and challenges. Sci. Total Environ. 803, 149990. doi: 10.1016/j.scitotenv.2021.149990
Manikandan, A., & Subramanian, K. S. 2016. Evaluation of zeolite based nitrogen nano- fertilizers on maize growth, yield and quality on inceptisols and alfisols. International Journal of Plant and Soil Science 9(4), p. 1-9.
Mengel, K. & Kirkby, E. A. 2012. Principles of plant nutrition. Springer Science & Business Media. Gujarat conditions. Agricultural Science Digest. 29(2): 66-68.
Nouraein, M. (2019). Effect of nanofertilizers and biofertilizers on yield of maize: Biplot analysis. Botanica, 25(2):121-130
Olsen, S.R., Cole, C.V., Watanabe, P.S. & Dean, L. A. 1954. Estimation of available phosphorus is soils by extraction with sodium carbonate USDA. Cir. No: 959.
Paramesh, V., Dhar, S., Dass, A., Kumar, B., Kumar, A., El-Ansary, D. O., et al. (2020). Role of integrated nutrient management and agronomic fortification of zinc on yield, nutrient uptake and quality of wheat. Sustainability 12:3513. doi: 10.3390/su12093513
Rane, J., Pradhan, A., Aher, L. & Singh, N. P. 2019. ICAR-NIASM Publications, ICAR-NIASM, Baramati. Pp-12
Ruiz, K.B., Biondi, S., Martinez, E.A., Orsini, F., Antognoni, F. & Jacobsen, S.E. Quinoa—A model crop for understanding salt-tolerance mechanisms in halophytes. 2015. Plant Biosys. Int. J., 150, 357–371.
Stanford, S. & English, L. 1949. Use of flame photometer in rapid soil tests of K and Ca. J. Agron. 41: 446-447.
Subbarao, C. V., Kartheek, G. & Sirisha, D. 2013. Slow release of potash fertilizer through polymer coating. International Journal of Applied science and engineering, 11(1): 25-30.
Subbiah, B.V. & Asija, A.L. 1956. A rapid procedure for estimation of available nitrogen in soils. Curr. Sci. 25: 259-260.
Tarafder, C., Daizy, M., Alam, M. M., Ali, M. R., Islam, M. J., Islam, R., et al. (2020). Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients. ACS Omega 5, 23960–23966. doi: 10.1021/acsomega.0c03233
Verma, K. K., Song, X.-P., Joshi, A., Tian, D.-D., Rajput, V. D., Singh, M., et al. (2022). Recent trends in nano-fertilizers for sustainable agriculture under climate change for global good security. Nanomaterials. 12, 173. doi: 10.3390/nano12010173
Walkley, A. & Black, J.A. 1934. An estimation of soil organic carbon by chromic acid titration method. Soil Sci. 37: 29-38.
Wang, J., Liu, L., Gao, X., Hao, J., & Wang, M. (2021). Elucidating the effect of biofertilizers on bacterial diversity in maize rhizosphere soil. PLoS ONE. 16, e0249834. doi: 10.1371/journal.pone.0249834
Wasaya, A., Yasir, T. A., Sarwar, N., Mubeen, K., Rajendran, K., Hadifa, A., et al. (2022). “Climate change and global rice security,” in Modern Techniques of Rice Crop Production (Singapore: Springer), 13–26. doi: 10.1007/978-981-16-4955-4_2
Yongli Lan, Wengang Zhang, Fuguo Liu, Lei Wang, Xijuan Yang, Shaobo Ma , Yutang Wang , & Xuebo Liu. (2023). Recent advances in physiochemical changes, nutritional value, bioactivities, and food applications of germinated quinoa: A comprehensive review. Food Chemistry, 426, 15:136390. https://doi.org/10.1016/j.foodchem.20 23.1 36390.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)