Potential of Stenotrophomonas rhizophila as plant growth promoting rhizobacterium to improve the growth of mustard crop
Article Main
Abstract
Plant Growth-Promoting Rhizobacteria (PGPR) enhances soil quality and enriches soil fertility. Stenotrophomonas rhizophila is one such bacteria that enhances plant growth, especially in saline soil. The indirect role of this bacterium has been identified in Integrated Pest Management wherein Indian mustard has been utilized as a pest trap crop in cauliflower fields. The present study aims to enhance the growth of mustard plants with the periodic application of S. rhizophila. Increasing the population of this bacterium in the soil is also expected to enrich soil fertility and ensure protection from pests in cauliflower fields. Thirteen bacteria (S1 to S13) were isolated from soil samples collected near the root nodules of cauliflower plants from different agricultural fields. Bacterial isolate S3 was identified as S. rhizophila through biochemical tests and 16s rRNA sequencing. Four treatments (T1 to T4) were selected for a 28-day pot study by varying the soil condition (sterile, non-sterile) and biopriming of mustard seeds with the inoculum of S. rhizophila. Once in every 4 days, 0.5 % of the inoculum was added to the pots (T1, T3) to identify changes in the growth of mustard plantlets. A high bacterial load of 2.97*108 in the T3 pot was observed comparatively. The obtained results were also statistically significant (ie., P < 0.05) regarding total plant height, chlorophyll content, and microbial load. Hence, it was found that S. rhizophila can effectively influence the growth of mustard plants thereby encouraging a pest-free environment in cauliflower fields.
Article Details
Article Details
Stenotrophomonas rhizophila, Plant Growth Promoting Rhizobacteria, 16s rRNA sequencing, Mustard
Alavi, P., Starcher, M. R., Thallinger, G. G., Zachow, C., Muller, H., & Berg, G. (2014). Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics, 15(1), 482. https://doi.org/10.1186/1471-2164-15-482
Alexander, A., Singh, V. K., & Mishra, A. (2020). Halotolerant PGPR Stenotrophomonas maltophilia BJ01 Induces Salt Tolerance by Modulating Physiology and Biochemical Activities of Arachis hypogaea. Frontiers in Microbiology, 11(568289). https://doi.org/10.3389/fmicb.2020.568289
Amoli, R. I., Nowroozi, J., Sabokbar, A., & Rajabniya, R. (2017). Isolation of Stenotrophomonas maltophilia from clinical samples: An investigation of patterns motility and production of melanin pigment. Asian Pacific Journal of Tropical Biomedicine, 7(9), 826–830. https://doi.org/10.1016/j.apjtb.2017.08.012
Appanna, V. (2007). Efficacy of Phosphate Solubilizing Bacteria Isolated from Vertisols on Growth and Yield Parameters of Sorghum. Research Journal of Microbiology, 2(7), 550–559.
Ashmawy, N. A., Behiry, S. I., Al-Huqail, A. A., Ali, H. M., & Mohamed. (2020). Bioactivity of Selected Phenolic Acids and Hexane Extracts from Bougainvilla spectabilis and Citharexylum spinosum on the Growth of Pectobacterium carotovorum and Dickeya solani Bacteria: An Opportunity to Save the Environment. Processes, 8(4), 482–482. https://doi.org/10.3390/pr8040482
Ashmawy, N. A., Jadalla, N. M., Shoeib, A. A., & El-Bebany, A. F. (2015). Identification and Genetic Characterization of Pectobacterium spp. and Related Enterobacteriaceae Causing Potato Soft Rot Diseases in Egypt. Journal of Pure and Applied Microbiology, 9(3), 1847–1858.
Beveridge, T. V. (2001). Use of the Gram stain in microbiology. Biotechnic & Histochemistry, 76(3), 111–118.
Chakraborti, S., Bera, K., Sadhukhan, S., & Dutta, P. (2022). Bio-priming of seeds: Plant stress management and its underlying cellular, biochemical and molecular mechanisms. Plant Stress, 3, 100052. https://doi.org/10.1016/j.stress.2021.100052
Charleston, D. S., & Kfir, R. (2000). The possibility of using Indian mustard, Brassica juncea, as a trap crop for the diamondback moth, Plutella xylostella, in South Africa. Crop Protection, 19(7), 455–460. https://doi.org/10.1016/s0261-2194(00)00037-5
Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5), 669–678. https://doi.org/10.1016/j.soilbio.2009.11.024
Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.-F. ., Guindon, S., Lefort, V., Lescot, M., Claverie, J.-M., & Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36, W465–W469. https://doi.org/10.1093/nar/gkn180
Ding, J. Y. M., Ho, L. S., Ibrahim, J., Teh, C. K., & Goh, K. M. (2023). Impact of sterilization and chemical fertilizer on the microbiota of oil palm seedlings. Frontiers in Microbiology, 14(1091755). https://doi.org/10.3389/fmicb.2023.1091755
Diyansah, B., Aini, L. Q., & Hadiastono, T. (2013). The effect of PGPR (Plant Growth Promoting Rhizobacteria) Pseudomonas fluorescens and Bacillus subtilis on Leaf Mustard Plant (Brassica juncea L.) Infected by TuMV (Turnip Mosaic Virus). Journal of Tropical Plant Protection, 1(1), 30–38.
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340
Egamberdieva, D., Kucharova, Z., Davranov, K., Berg, G., Makarova, N., Azarova, T., Chebotar, V., Tikhonovich, I., Kamilova, F., Validov, S. Z., & Lugtenberg, B. (2011). Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and Fertility of Soils, 47(2), 197–205. https://doi.org/10.1007/s00374-010-0523-3
Elhosieny, A. A. E., Zayed, M. S., Selim, S., & Aziz, N. H. A. (2023). Stenotrophomonas rhizophila a Novel Plant-Associated Bacterium with Distinguished PGPRs Properties. Arab Universities Journal of Agricultural Sciences, 31(1), 41–50. https://doi.org/10.21608/ajs.2023.159562.1493
Fiodor, A., Ajijah, N., Dziewit, L., & Pranaw, K. (2023). Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth. Frontiers in Microbiology, 14, 1142966. https://doi.org/10.3389/fmicb.2023.1142966
García, A. L., Franco, J. A., Nicolás, N., & Vicente, R. M. (2006). Influence of Amino Acids in the Hydroponic Medium on the Growth of Tomato Plants. Journal of Plant Nutrition, 29(12), 2093–2104. https://doi.org/10.1080/01904160600972183
George, D. R., Collier, R., & Port, G. (2009). Testing and improving the effectiveness of trap crops for management of the diamondback moth Plutella xylostella
(L.): a laboratory-based study. Pest Management Science, 65(11), 1219–1227. https://doi.org/10.1002/ps.1813
Ghatak, S., Muthukumaran, R. B., & Nachimuthu, S. K. (2013). A Simple Method of Genomic DNA Extraction from Human Samples for PCR-RFLP Analysis. Journal of Biomolecular Techniques, 24(4), 224–231. https://doi.org/10.7171/jbt.13-2404-001
Gholami, A., Shahsavani, S., & Nezarat, S. (2009). The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination, Seedling Growth and Yield of Maize. World Academy of Science, Engineering and Technology, 49, 19–24.
Ghule, P. L., Dahiphale, V. V., Jadhav, J. D., & Palve, D. K. (2013). Absolute growth rate, relative growth rate, net assimilation rate as influenced on dry matter weight of Bt cotton. International Research Journal of Agricultural Economics and Statistics, 4(1), 42–46.
Helias, V., Hamon, P., Huchet, E., Wolf, J. V. D., & Andrivon, D. (2011). Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathology, 61(2), 339–345. https://doi.org/10.1111/j.1365-3059.2011.02508.x
Imadi, S. R., Shah, S. W., Kazi, A. G., Azooz, M. M., & Ahmad, P. (2010). Phytoremediation of Saline Soils for Sustainable Agricultural Productivity. In M. Ashraf, M. Ozturk, & M. S. A. Ahmad (Eds.), Plant Adaptation and Phytoremediation (pp. 455–468). Springer Dordrecht. https://doi.org/10.1016/b978-0-12-803158-2.00018-7
Imparato, V. M. (2022). Stenotrophomonas rhizophila Chitinase Variation and its Role in Suppressing Fusarium oxysporum Pathogenesis in Tomato (pp. 1–8). https://www.proquest.com/dissertations-theses/em-stenotrophomonas-rhizophila-chitinase/docview/2734632892/se-2
Kado, C. I. (2006). Erwinia and Related Genera. The Prokaryotes, 6, 443–450. https://doi.org/10.1007/0-387-30746-x_15
Khalid, A., Arshad, M., & Zahir, Z. A. (2004). Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, 96(3), 473–480. https://doi.org/10.1046/j.1365-2672.2003.02161.x
Khan, F., Inamul, H., Nimatullah, Tariq, S., Muhammad, F., Ohia, C., & Tauseef, A. (2018). Isolation, Characterisation and Identification of Plant Growth Promoting Rhizobacteria from Cauliflower (Brassica oleracea). Archives of Basic and Applied Medicine, 6(1), 55–60.
Khan, V., Umar, S., & Iqbal, N. (2023). Palliating Salt Stress in Mustard through Plant-Growth-Promoting Rhizobacteria: Regulation of Secondary Metabolites, Osmolytes, Antioxidative Enzymes and Stress Ethylene. Plants, 12(4), 705. https://doi.org/10.3390/plants12040705
Koza, N. A., Adedayo, A. A., Babalola, O. O., & Kappo, A. P. (2022). Microorganisms in Plant Growth and Development: Roles in Abiotic Stress Tolerance and Secondary Metabolites Secretion. Microorganisms, 10(8), 1528. https://doi.org/10.3390/microorganisms10081528
Kumar, S. V. P., & Manjunatha, B. K. (2015). Studies on hydrocarbon degradation by the bacterial isolate Stenotrophomonas rhizophila (PM-1) from oil spilled regions of Western Ghats of Karnataka. Science, Technology and Arts Research Journal, 4(3), 139–144. https://doi.org/10.4314/star.v4i3.21
Kyule, D. N., Maingi, J. M., Njeru, E. M., & Nyamache, A. K. (2022). Molecular Characterization and Diversity of Bacteria Isolated from Fish and Fish Products Retailed in Kenyan Markets. International Journal of Food Science, 2022(2379323), 1–12. https://doi.org/10.1155/202 2/2379323
Lebrazi, S., Niehaus, K., Bednarz, H., Fadil, M., Chraibi, M., & Fikri-Benbrahim, K. (2020). Screening and optimization of indole-3-acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth. Journal of Genetic Engineering and Biotechnology, 18(1). https://doi.org/10.1186/s43141-020-00090-2
Lowry, C. I., & Smith, R. G. (2018). Weed Control Through Crop Plant Manipulations. In K. Jabran & B. S. Chauhan (Eds.), Non-Chemical Weed Control (pp. 73–96). Academic Press. https://doi.org/10.1016/B978-0-12-809881-3.00005-X
Mahmood, A., Turgay, O. C., Farooq, M., & Hayat, R. (2016). Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiology Ecology, 92(fiw112). https://doi.org/10.1093/femsec/fiw112
Milek, J., & Lamkiewicz, J. (2022). The starch hydrolysis by α-amylase Bacillus spp.: an estimation of the optimum temperatures, the activation and deactivation energies. Journal of Thermal Analysis and Calorimetry, 147, 14459–14466. https://doi.org/10.1007/s10973-022-11738-1
Mushtaq, H., Ganai, B. A., & Jehangir, A. (2023). Exploring soil bacterial diversity in different micro-vegetational habitats of Dachigam National Park in North-western Himalaya. Scientific Reports, 13(3090). https://doi.org/10.1038/s41598-023-30187-w
Mustafa, G., & Akhtar, M. S. (2019). Crops and Methods to Control Soil Salinity. In M. S. Akhtar (Ed.), Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches (pp. 237–251). Springer. https://doi.org/10.1007/978-981-13-8805-7_11
Nezarat, S., & Gholami, A. (2009). Screening Plant Growth Promoting Rhizobacteria for Improving Seed Germination, Seedling Growth and Yield of Maize. Pakistan Journal of Biological Sciences, 12(1), 26–32. https://doi.org/10.3923/pjbs.2009.26.32
Ortiz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodriguez, L., & López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signaling & Behavior, 4(8), 701–712. https://doi.org/10.4161/psb.4.8.9047
Ozsahin, E., Sezen, K., Demir, I., & Demirbag, Z. (2014). Bacterial isolates from Palomena prasine (Hemiptera: Pentatomidae) include potential microbial control agents. Biocontrol Science and Technology, 24(9), 1039–1051. https://doi.org/10.1080/09583157.2014.918584
Paine, C. E. T., Marthews, T. R., Vogt, D. R., Purves, D., Rees, M., Hector, A., & Turnbull, L. A. (2011). How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution, 3(2), 245–256. https://doi.org/10.1111/j.2041-210x.2011.00155.x
Pal, A. K., Mandal, S., & Sengupta, C. (2019). Exploitation of IAA Producing PGPR on mustard (Brassica nigra L.) seedling growth under cadmium stress condition in comparison with exogenous IAA application. Plant Science Today, 6(1), 22–30. https://doi.org/10.14719/pst.2019.6.1.440
Perez-Garcia, L.-A., Sáenz-Mata, J., Fortis-Hernandez, M., Navarro-Munoz, C. E., Palacio-Rodríguez, R., & Preciado-Rangel, P. (2023). Plant-Growth-Promoting Rhizobacteria Improve Germination and Bioactive Compounds in Cucumber Seedlings. Agronomy, 13(2), 315. https://doi.org/10.3390/agronomy13020315
Perez-Patricio, M., Camas-Anzueto, J., Sanchez-Alegria, A., Aguilar-González, A., Gutiérrez-Miceli, F., Escobar-Gómez, E., Voisin, Y., Rios-Rojas, C., & Grajales-Coutino, R. (2018). Optical Method for Estimating the Chlorophyll Contents in Plant Leaves. Sensors, 18(2), 650. https://doi.org/10.3390/s18020650
Pinski, A., Zur, J., Hasterok, R., & Hupert-Kocurek, K. (2020). Comparative Genomics of Stenotrophomonas maltophilia and Stenotrophomonas rhizophila Revealed Characteristic Features of Both Species. International Journal of Molecular Sciences, 21(14), 4922. https://doi.org/10.3390/ijms21144922
Ragavi, G., Muthamilan, M., Nakkeeran, S., Kumaravadivel, N., Sivakumar, U., & Suganthi, A. (2019). Molecular Detection of the Causative Agent of Soft Rot (Pectobacterium carotovorum subsp carotovorum) in Banana (Musa sp.). International Journal of Current Microbiology and Applied Sciences, 8(11), 1854–1868. https://doi.org/10.20546/ijcmas.2019.811.218
Raio, A., Brilli, F., Neri, L., Baraldi, R., Orlando, F., Pugliesi, C., Chen, X., & Baccelli, I. (2023). Stenotrophomonas rhizophila Ep2.2 inhibits growth of Botrytis cinerea through the emission of volatile organic compounds, restricts leaf infection and primes defense genes. Frontiers in Plant Science, 14(1235669). https://doi.org/10.3389/fpls.2023.1235669
Reyes-Castillo, A., Gerding, M., Oyarzúa, P., Zagal, E., Gerding, J., & Fischer, S. (2019). Plant growth-promoting rhizobacteria able to improve NPK availability: selection, identification and effects on tomato growth. Chilean Journal of Agricultural Research, 79(3), 473–485. https://doi.org/10.4067/s0718-58392019000300473
Robe, P., Nalin, R., Capellano, C., Vogel, T. M., & Simonet, P. (2003). Extraction of DNA from soil. European Journal of Soil Biology, 39(4), 183–190. https://doi.org/10.1016/s1164-5563(03)00033-5
Rocha, I., Ma, Y., Souza-Alonso, P., Vosátka, M., Freitas, H., & Oliveira, R. S. (2019). Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Frontiers in Plant Science, 10, 1357. https://doi.org/10.3389/fpls.2019.01357
Roder, A., Hoffmann, E., Hagemann, M., & Berg, G. (2005). Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microbiology Letters, 243(1), 219–226. https://doi.org/10.1016/j.femsle.2004.12.005
Ryan, R. P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M. B., Berg, G., van der Lelie, D., & Dow, J. M. (2009). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews Microbiology, 7(7), 514–525. https://doi.org/10.1038/nrmicro2163
Said, M. S., Tirthani, E., & Lesho, E. (2023). Stenotrophomonas Maltophilia. PubMed; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK572123/
Schmidt, C. S., Alavi, M., Cardinale, M., Muller, H., & Berg, G. (2012). Stenotrophomonas rhizophila DSM14405T promotes plant growth probably by altering fungal communities in the rhizosphere. Biology and Fertility of Soils, 48(8), 947–960. https://doi.org/10.1007/s00374-012-0688-z
Shakeel, A., Khan, A. A., & Ahmad, G. (2019). The potential of thermal power plant fly ash to promote the growth of Indian mustard (Brassica juncea) in agricultural soils. SN Applied Sciences, 1(4), 375. https://doi.org/10.1007/s42452-019-0404-9
Sharafi, S. M., Rasooli, I., & Beheshti-Maal, K. (2010). Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods. Iranian Journal of Microbiology, 2(1), 38–45.
Sharma, R., Sindhu, S., & Sindhu, S. S. (2018). Bioinoculation of Mustard (Brassica juncea L.) with Beneficial Rhizobacteria: A Sustainable Alternative to Improve Crop Growth. International Journal of Current Microbiology and Applied Sciences, 7(5), 1375–1386. https://doi.org/10.20546/ijcmas.2018.705.163
Tessmer, O. L., Jiao, Y., Cruz, J. A., Kramer, D. M., & Chen, J. (2013). Functional approach to high-throughput plant growth analysis. BMC Systems Biology, 7(S6), S17. https://doi.org/10.1186/1752-0509-7-s6-s17
Trevors, J. T. (1996). Sterilization and inhibition of microbial activity in soil. Journal of Microbiological Methods,
26(1-2), 53–59. https://doi.org/10.1016/0167-7012(96)00
843-3
Velmurugan, S., Anokhe, A., & Kalia, V. (2021). Biochemical Characterisation of Starch Hydrolysing Bacteria. AgriCos E-Newsletter, 2(11), 63–65.
Wolf, A., Fritze, A., Hagemann, M., & Berg, G. (2002). Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. International Journal of Systematic and Evolutionary Microbiology, 52(6), 1937–1944. https://doi.org/10.1099/00207713-52-6-1937
Yin, P., Zhang, Q., Zhu, J., Wu, G., Yin, S., Ma, Z., & Zhou, J. (2018). The data of genomic and phenotypic profiles of the N-acyl homoserine lactone-producing algicidal bacterium Stenotrophomonas rhizophila GA1. Data in Brief, 21, 966–971. https://doi.org/10.1016/j.dib.2018.10.051
Yuvaraj, M., Bose, K. S. C., Elavarasi, P., & Tawfik, E. (2021). Soil Salinity and Its Management. In R. S. Meena & R. Datta (Eds.), Soil Moisture Importance. IntechOpen. 10.5772/intechopen.93329
Zhang, Q., Wang, Y., & Zhou, J. (2021). Complete Genome Sequence of Stenotrophomonas rhizophila KC1, a Quorum Sensing–Producing Algicidal Bacterium Isolated from Mangrove Kandelia candel. Molecular Plant-Microbe Interactions, 34(7), 857–861. https://doi.org/10.1094/mpmi-12-20-0346-a
Zhou, L., Song, C., Li, Z., & Kuipers, O. P. (2021). Antimicrobial activity screening of rhizosphere soil bacteria from tomato and genome-based analysis of their antimicrobial biosynthetic potential. BMC Genomics, 22(1), 29. https://doi.org/10.1186/s12864-020-07346-8
Zhou, W., Qin, S., Lyu, D., & Zhang, P. (2014). Soil sterilisation and plant growth-promoting rhizobacteria promote root respiration and growth of sweet cherry rootstocks. Archives of Agronomy and Soil Science, 61(3), 361–370. https://doi.org/10.1080/03650340.2014.935346

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)