Article Main

G. Ajana J. El Figuigui S. E. Laasli Z. Fatemi K. Daoui

Abstract

In agroforestry systems, higher-positioned crops frequently tend to impose shade stress on lower-positioned ones, with consequent negative repercussions on the agronomic characteristics of the latter.  The present study was conducted under field conditions over two cropping seasons 2020-2021 and 2021-2022, to evaluate the mechanisms of physiological (e.g., stomatal conductance and water relative content) and biochemical (e.g., proline and chlorophyll content) variations, as well as grain yield and its components of different Faba bean varieties subjected to shade stress. Six varieties of Vicia faba L. (Aguadulce, Hiba, Zina, Alfia17, Defes, and Extra hative) were subjected to three levels of artificial shade stress S1 (0%), S2 (50%), and S3 (90%) during the flowering stage. The results showed that variety, shade treatment, and year significantly affected above-ground biomass and yield attributes. Substantial reductions in grain yield of 31.17% and 53.34% were observed under S2 and S3, respectively, compared with S1, demonstrating the adverse impact of shading on this parameter. Significant differences between the studied varieties were noticed. Among the varieties tested, Hiba and Zina showed the highest grain yield under shade stress conditions. Shading decreased stomatal conductance for all varieties tested, influencing proline synthesis in response to this abiotic stress. The results suggest that incorporating high-performance varieties Hiba and Zina into agroforestry systems can provide significant added value to local farmers since they are the most tolerant to shade stress, which can improve the performance of the tree-plant association in terms of yield and productivity.


 

Article Details

Article Details

Keywords

Artificial shade, Proline, Stomatal conductance, Vicia faba L., Yield

References
Ahmed S., Roro A., Beshir H., & Haile A. (2023). Physiological, growth, yield, and quality responses of hot pepper due to shade level. International Journal of Vegetable Scienc, 29(4), 375-402.
Amassaghrou A., Barkaoui K., Ahmed B., Alaoui S. B., Razouk R., & Daoui K. (2023). Impact of legumes and cereals on olive productivity in the South Mediterranean, 7(1), 06-13.
Angadi S. V., Umesh M. R., Begna S., & Gowda P. (2022). Light interception, agronomic performance, and nutritive quality of annual forage legumes as affected by shade. Field Crops Research, 275, 108358.
Barro F., De La Haba P., Maldonado J. M., & Fontes A. G. (1989). Effect of Light Quality on Growth, Contents of Carbohydrates, Protein and Pigments, and Nitrate Reductase Activity in Soybean Plants. Journal of Plant Physiology, 134(5), 586‑591.
Bates L. S., Waldren R. P. A., & Teare I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207.
Chai S., Tang J., Mallik A., Shi Y., Zou, R., Li J., & Wei X. (2018). Eco-physiological basis of shade adaptation of Camellia nitidissima, a rare and endangered forest understory plant of Southeast Asia. BMC Ecology, 18(1), 5.
Coussement T., Maloteau S., Pardon P., Artru S., Ridley S., Javaux, M., & Garré, S. (2018). A tree-bordered field as a surrogate for agroforestry in temperate regions: Where does the water go? Agricultural Water Management, 210, 198‑207.
Da Silva P. S. O., Oliveira L. F. G., Silva Gonzaga M. I., De Oliveira Alves Sena, E., Dos Santos Maciel, L. B., Pinheiro Fiaes, M., De Mattos, E. C., & Gutierrez Carnelossi, M. A. (2019). Effects of calcium particle films and natural shading on ecophysiological parameters of conilon coffee. Scientia Horticulturae, 245, 171‑177.
Dollinger J., & Jose S. (2018). Agroforestry for soil health. Agroforestry Systems, 92(2), 213‑219.
Du J., Jiang H., Sun X., Liu Y., Sun M., Li Y., Fan Z., Cao Q., Feng L., Shang J., Shu K., Liu J., Weiguo L., Yang F., Yong T., Wang X., & Yang W. (2018). Auxin and Gibberellins Are Required for the Receptor-Like Kinase ERECTA Regulated Hypocotyl Elongation in Shade Avoidance in Arabidopsis. Frontiers in Plant Science, 9, 124.
El Naim A., Abdalla A., Ahmed M., & Taha M. (2015). Biological Yield and Harvest Index of Faba Bean (Vicia faba L.) as Affected by Different Agro-ecological Environments. World Journal of Agricultural Research, 2015, Vol. 3, No. 2, 78-82, 3, 78‑82.
Essa S. M., Wafa H. A., Mahgoub E.-S. I., Hassanin A. A., Al-Khayri J. M., Jalal A. S., El-Moneim D. A., ALshamrani S. M., Safhi F. A., & Eldomiaty A. S. (2023). Assessment of Eight Faba Bean (Vicia faba L.) Cultivars for Drought Stress Tolerance through Molecular, Morphological, and Physiochemical Parameters. Sustainability, 15(4), Article 4.
Ferrara G., Boselli, M., Palasciano M., & Mazzeo A. (2023). Effect of shading determined by photovoltaic panels installed above the vines on the performance of cv. Corvina (Vitis vinifera L.). Scientia Horticulturae, 308, 111595.
Fida T., Ahmed B., Daoui K., Wery J., & Barkaoui K. (2021). Olive agroforestry can improve land productivity even under low water availability in the South Mediterranean. Agriculture Ecosystems & Environment, 307, 107234.
Galmés J., Medrano H., & Flexas J. (2007). Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New phytologist, 175(1), 81-93.
Gao J., Liu Z., Zhao B., Liu P., & Zhang J.-W. (2020). Physiological and comparative proteomic analysis provides new insights into the effects of shade stress in maize (Zea mays L.). BMC Plant Biology, 20.
Gómez-Bellot M. J., Sánchez-Blanco M. J., Lorente B., Vicente-Colomer M. J., & Ortuño M. F. (2023). Effects of Light Intensity and Water Stress on Growth, Photosynthetic Characteristics and Plant Survival of Cistus heterophyllus Desf. Subsp. Carthaginensis (Pau) M. B. Crespo & Mateo. Horticulturae, 9(8).
Hu J., Yu W., Liu P., Zhao B., Zhang J., & Ren B. (2023). Responses of canopy functionality, crop growth and grain yield of summer maize to shading, waterlogging, and their combination stress at different crop stages. European Journal of Agronomy, 144, 126761.
Hussain S., Iqbal N., Rahman T., Liu T., Brestic M., Safdar M. E., Asghar M. A., Farooq M. U., Shafiq I., Ali, A., Shoaib M., Chen G., Qin S., Liu W., & Yang W. (2019). Shade effect on carbohydrates dynamics and stem strength of soybean genotypes. Environmental and Experimental Botany, 162, 374‑382.
Iqbal N., Hussain S., Ahmed Z., Yang F., Wang X., Liu W., Yong T., Du J., Shu K., Yang W., & Liu J. (2019). Comparative analysis of maize–soybean strip intercropping systems: A review. Plant Production Science, 22(2), 131‑142.
Khalid M. H., Zhang Y., Fu F., Iqbal N., Raza M., Khan I., Yu H., Li W., Sun F., & Lu F. (2019). Effect of shade treatments on morphology, photosynthetic and chlorophyll fluorescence characteristics of soybeans (Glycine max L. Merr.). Applied Ecology and Environmental Research, 17.
Kostaki K.-I., Coupel-Ledru A., Bonnell V. C., Gustavsson M., Sun P., McLaughlin F. J., Fraser D. P., McLachlan D. H., Hetherington A. M., Dodd A. N., & Franklin K. A. (2020). Guard Cells Integrate Light and Temperature Signals to Control Stomatal Aperture. Plant Physiology, 182(3), 1404‑1419. 8
Krause M., Sørensen J., Petersen I., Duque-Estrada P., Cappello C., Tlais A. Z. A., Di Cagno R., Ispiryan L., Sahin A., Arendt E., & Zannini E. (2023). Associating Compositional, Nutritional and Techno-Functional Characteristics of Faba Bean (Vicia faba L.) Protein Isolates and Their Production Side-Streams with Potential Food Applications. Foods, 12, 919.
Lake L., & Sadras V. O. (2014). The critical period for yield determination in chickpea (Cicer arietinum L.). Field Crops Research, 168, 1‑7.
Li Y., Zhao H., Duan B., Korpelainen H., & Li C. (2011). Effect of drought and ABA on growth, photosynthesis and antioxidant system of Cotinus coggygria seedlings under two different light conditions. Environmental and Experimental Botany, 71(1), 107‑113.
Mayer S., Wiesmeier M., Sakamoto E., Hübner R., Cardinael R., Kühnel A., & Kögel-Knabner I. (2022). Soil organic carbon sequestration in temperate agroforestry systems – A meta-analysis. Agriculture, Ecosystems & Environment, 323, 107689.

Mensah E. O., Ræbild A., Asare R., Amoatey C. A., Markussen B., Owusu K., Asitoakor B. K., & Vaast P. (2023). Combined effects of shade and drought on physiology, growth, and yield of mature cocoa trees. Science of The Total Environment, 165657.
Mugunga C. P., Giller K. E., & Mohren G. M. J. (2017). Tree-crop interactions in maize-eucalypt woodlot systems in southern Rwanda. European Journal of Agronomy, 86, 78‑86.
Muhammad A. A., Jiang H., Shui Z., Cao X., Huang X., Imran S., Ahmad B., Zhang, H., Yang Y., Shang J., Yang H., Yu L., Liu C., Yang W., Sun X., & Du J. (2021). Interactive effect of shade and PEG-induced osmotic stress on physiological responses of soybean seedlings. Journal of Integrative Agriculture, 20(9), 2382‑2394.
Naim M., Mohd Zain N. A., Osman N., Rejab N., Sahruzaini N., & Cheng A. (2020). Effects of shading on the growth, development and yield of winged bean (Psophocarpus tetragonolobus). Ciência Rural, 50.
Naseer M., Nengyan Z., Ejaz I., Hussain S., Asghar M., Farooq M., Rui Q., Ullah A., Xiaoli C., & Xiaolong R. (2023). Physiological Mechanisms of Grain Yield Loss Under Combined Drought and Shading Stress at the Post-silking Stage in Maize. 23, 1125‑1137.
Nurgi N., Tana T., Dechassa N., Alemayehu Y., & Tesso B. (2023). Effects of planting density and variety on productivity of maize-faba bean intercropping system. Heliyon, 9(1), e12967.
Oukaltouma K., El Moukhtari A., Lahrizi Y., Mohammed M., Farissi M., weillems A., Qaddoury A., Bekkaoui F., & Ghoulam C. (2020). Phosphorus deficiency enhances water deficit impact on some morphological and physiological traits in four faba bean (Vicia faba L.) varieties. Italian Journal of Agronomy, 16.
Pan S., Liu H., Mo Z., Patterson B., Duan M., Tian H., Hu S., & Tang X. (2016). Effects of Nitrogen and Shading on Root Morphologies, Nutrient Accumulation, and Photosynthetic Parameters in Different Rice Genotypes. Scientific Reports, 6(1), 32148.
Peng X., Thevathasan N. V., Gordon A. M., Mohammed I., & Gao P. (2015). Photosynthetic Response of Soybean to Microclimate in 26-Year-Old Tree-Based Intercropping Systems in Southern Ontario, Canada. PLOS ONE, 10(6), e0129467.
Pent G. J., & Fike J. H. (2021). Enhanced Ecosystem Services Provided by Silvopastures. In R. P. Udawatta & S. Jose (Éds.), Agroforestry and Ecosystem Services (p. 141‑171). Springer International Publishing.
Ploschuk R. A., Miralles D. J., & Striker G. G. (2021). Early‐ And late‐waterlogging differentially affect the yield of wheat, barley, oilseed rape and field pea through changes in leaf area index, radiation interception and radiation use efficiency. Journal of Agronomy and Crop Science, 207(3), 504‑520.
Qahtan A. (2021). Genetic Diversity and Structure Analysis of a Worldwide Collection of Faba bean (Vicia faba) Genotypes using ISSR Markers. International Journal of Agriculture and Biology, 25, 683‑691.
Rivest D., Cogliastro A., Vanasse A., & Olivier A. (2009). Production of soybean associated with different hybrid poplar clones in a tree-based intercropping system in southwestern Québec, Canada. Agriculture, Ecosystems & Environment, 131(1), 51‑60.
Rodrigues da Cruz P. J., Vitória Santos M., Da Silva L., Alves Ferreira E., Magalhães M., Martuscello J., & da Fonseca D. (2020). Morphogenetic, physiological, and productive of forage peanut responses to shading. Pesquisa Agropecuária Brasileira, 55.
Rousseau, G. X., Deheuvels, O., Rodriguez Arias, I., & Somarriba, E. (2012). Indicating soil quality in cacao-based agroforestry systems and old-growth forests: The potential of soil macrofauna assemblage. Ecological Indicators, 23, 535‑543.
Shafiq I., Hussain S., Hassan B., Shoaib M., Mumtaz M., Wang B., Raza A., Manaf, A., Ansar M., Yang W., & Yang F. (2020). Effect of simultaneous shade and drought stress on morphology, leaf gas exchange, and yield parameters of different soybean cultivars. Photosynthetica, 58.
Song S., He A., Zhao T., Yin Q., Mu Y., Wang Y., Liu H., Nie L., & Peng S. (2022). Effects of shading at different growth stages with various shading intensities on the grain yield and anthocyanin content of colored rice (Oryza sativa L.). Field Crops Research, 283, 108555.
Wang Y., Gao L., Shan Y., Liu Y., Tian Y., & Xia T. (2012). Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Scientia horticulturae, 141, 7-16.
Wang Q., Hou F., Dong S., Xie B., Li A., Zhang H., & Zhang L. (2014). Effects of shading on the photosynthetic capacity, endogenous hormones and root yield in purple-fleshed sweetpotato (Ipomoea batatas (L.) Lam). Plant Growth Regulation, 72(2), 113‑122.
Wang Y., Huang R., & Zhou Y. (2021a). Effects of shading stress during the reproductive stages on photosynthetic physiology and yield characteristics of peanut (Arachis hypogaea Linn.). Journal of Integrative Agriculture, 20(5), 1250‑1265.
Wang Y., Huang, R., & Zhou Y. (2021b). Effects of shading stress during the reproductive stages on photosynthetic physiology and yield characteristics of peanut (Arachis hypogaea Linn.). Journal of Integrative Agriculture, 20(5), 1250‑1265.
Wang Y., Huang R., & Zhou Y. (2021c). Effects of shading stress during the reproductive stages on photosynthetic physiology and yield characteristics of peanut (Arachis hypogaea Linn.). Journal of Integrative Agriculture, 20(5), 1250‑1265.
Wu L., Zhang W., Ding Y., Zhang J., Cambula E., Weng F., Liu Z. H., Ding C.-Q., Tang S., Chen L., Wang S., & Li G. (2017). Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.). Frontiers in Plant Science, 8.
Xie W., Li, Y., Li Y., Ma L., Ashraf U., Tang X., Pan S., Tian H., & Mo Z. (2021). Application of γ-aminobutyric acid under low light conditions: Effects on yield, aroma, element status, and physiological attributes of fragrant rice. Ecotoxicology and Environmental Safety, 213, 111941.
Zervoudakis G., Salachas G., Kaspiris & Konstantopoulou. (2012). Influence of Light Intensity on Growth and Physiological Characteristics of Common Sage (Salvia officinalis L.). Brazilian Archives of Biology and Technology, 55, 89-95.
Section
Research Articles

How to Cite

Effect of genotypes and artificial shading during flowering stage on the productivity patterns of Faba bean (Vicia faba L.) under Mediterranean conditions. (2024). Journal of Applied and Natural Science, 16(4), 1745-1757. https://doi.org/10.31018/jans.v16i4.6063