Total phenolic content and in vitro evaluation of antioxidant activity of microbial extract of defatted biomass of mutant Pseudochlorella pringsheimii EMM2
Article Main
Abstract
Microalgal biomass is considered to be a renewable source for organic antioxidants. The present study aimed to evaluate the defatted biomass (DB) of the mutated green microalga Pseudochlorella pringsheimii EMM2 for increasing total phenolic content (TPC) extraction and antioxidant activity via microbial fermentation. Three distinct bacterial strains, Bacillus amyloliquefaciens (Accession number: KT276356), B. stearothermophilus (Accession number: KT282130), and B. subtilis (Accession number: KT282131) were obtained from sago industrial wastewater, utilized the hydrolysate from the DB of P. pringsheimii EMM2 as the exclusive medium for fermentation in this work. Among these bacterial strains, B. stearothermophilus was chosen for further investigation due to its effectiveness in enhancing the extraction of TPC and antioxidant activity of the hydrolysate of DB through fermentation. The fermentation conditions were optimized using a classical method, identifying the optimum physical parameters as a pH of 7.0, a temperature of 55 °C, an agitation speed of 150 rpm, and a fermentation time of 40 hours for maximizing the antioxidant activity of the hydrolysate of DB. Under these optimal conditions, a 6.11-fold increase in DPPH radical scavenging activity was observed in the hydrolysate. Consequently, this study demonstrated that the DB of the mutant microalga P. pringsheimii EMM2 is a valuable source for TPC production through fermentation with B. stearothermophilus.
Article Details
Article Details
Defatted biomass, Fermentation, Hydrolysate, Pseudochlorella pringsheimii, Total phenolic content
Andriopoulos, V., Gkioni, M.D., Koutra, E., Mastropetros, S.G., Lamari, F.N., Hatziantoniou, S. & Kornaros, M. (2022). Total Phenolic Content, Biomass Composition, and Antioxidant Activity of Selected Marine Microalgal Species with Potential as Aquaculture Feed. Antioxidants, 11(7), 1320. doi.org/10.3390/antiox11071320
Asif, M. (2015). Chemistry and antioxidant activity of plants containing some phenolic compounds. Chemistry International, 1, 35–52.
Bae, H.N. & Kim, Y.M. (2010). Improvement of the functional qualities of sea tangle extract through fermentation by Aspergillus oryzae. Fish Aquat Science, 13, 12-17. 10.5657/fas.2010.13.1.012
Banskota, A.H., Sperker, S., Stefanova, R., McGinn, P.J. & O’Leary, S.J.B. (2019). Antioxidant properties and lipid composition of selected microalgae. Journal of Applied Phycology, 31, 309–318. 10.1007/s10811-018-1523-1
Bautista-Hernandez, I., Aguilar, C.N., Martínez-Avila, G.C., Ilina, A., Torres-Leon, C., Verma, D.K. & Chavez-Gonzalez, M.L. (2022). Phenolic compounds and antioxidant activity of Lippia graveolens Kunth residual leaves fermented by two filamentous fungal strains in solid-state process. Food and Bioproducts Processing, 136, 24-35. 10.1016/j.fbp.2022.09.001
Bligh, E.G. & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911- 917. 10.1139/o59-099
Bulut, O., Akın, D., Sonmez, Ç., Oktem. A., Yucel, M. & Oktem, H.A. (2019) Phenolic compounds, carotenoids, and antioxidant capacities of a thermo-tolerant Scenedesmus sp. (Chlorophyta) extracted with different solvents. Journal of Applied Phycology, 231(3), 1675-1683. 10.1007/s10811-018-1726-5
Coulombier, N., Jauffrais, T. and Lebouvier, N., 2021. Antioxidant compounds from microalgae: A review. Marine drugs, 19(10), 549. doi.org/10.3390/md19100549
Dey, T.B. & Kuhad, R.C. (2014). Enhanced production and extraction of phenolic compounds from wheat by solid-state fermentation with Rhizopus oryzae RCK2012. Biotechnology Reports, 4, 120-127. doi.org/10.1016/j.btre.2014.09.006
Dhandayuthapani, K., Kumar, P.S., Chia, W.Y., Chew, K.W., Karthik, V., Selvarangaraj, H., Selvakumar, P, Sivashanmugam, P & Show, P.L. (2022). Bioethanol from hydrolysate of ultrasonic processed robust microalgal biomass cultivated in dairy wastewater under optimal strategy. Energy, 244:122604. 10.1016/j.energy.2021.122604
Galasso, C., Gentile, A., Orefice, I., Ianora, A., Bruno, A., Noonan, D.M., Sansone, C., Albini, A. & Brunet, C. (2019). Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. Nutrients, 11, 1226. 10.3390/nu11061226
Halliwell, B. (1995). Antioxidant characterization methodology and mechanism. Biochemical Pharmacology, 49, 1341–1348. doi.org/10.1016/0006-2952(95)00088-H
Jerez-Martel, I., Garcia-Poza, S., Rodriguez-Martel, G., Rico, M., Afonso- Olivares, C. & Gomez-Pinchetti J.L. (2017). Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. Journal of Food Quality, 2924508. doi.org/10.1155/2017/2924508
Jomova, K., Alomar, S.Y., Alwasel, S.H., Nepovimova, E., Kuca, K. & Valko, M. (2024). Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Archives of Toxicology, 98(5),1323-1367. https://doi.org/10.1007/s00204-024-03696-4
Khan, M.I., Shin, J.H. & Kim, J.D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17, 36. doi.org/10.1186/s12934-018-0879-x
Kumar, M., Flint, S., Palmer, J., Chanapha, S. and Hall, C. (2021). Influence of incubation temperature and total dissolved solids on biofilm and spore formation by dairy isolates of Geobacillus stearothermophilus. Applied and Environmental Microbiology, 87(8), e02311-20. 10.1128/AEM.02311-20
Kumar, N., Min, B. & Venkata Mohan, S. (2018). Defatted algal biomass as feedstock for short chain carboxylic acids and biohydrogen production in the biorefinery format, Bioresource Technology, 269, 408- 416. 10.1016/j.biortech.2018.08.059
Ljungqvist, E., Daga-Quisbert, J., van Maris, A. & Gustavsson, M. (2024). Insights into the rapid metabolism of Geobacillus sp. LC300: unraveling metabolic requirements and optimal growth conditions. Extremophiles, 28(1), 6. 10.1007/s00792-023-01319-x
Lum, K.K., Kim, J. & Lei, X.G. (2013). Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. Journal of Animal Science and Biotechnology, 4, 53. 10.1186/2049-1891-4-53
Marti-Quijal, F.J., Khubber, S., Remize, F., Tomasevic, I., Roselló-Soto, E. and Barba, F.J. (2021). Obtaining antioxidants and natural preservatives from food by-products through fermentation: A review. Fermentation, 7(3),106. 10.3390/fermentation7030106
Misiou, O., Kasiouras, G. & Koutsoumanis, K. (2021). Development and validation of an extended predictive model for the effect of pH and water activity on the growth kinetics of Geobacillus stearothermophilus in plant-based milk alternatives. Food Research International, 145, 110407. doi.org/10.1016/j.foodres.2021.110407
Mittal, G.S. (1992). Food Biotechnology: Techniques and Applications. Lancaster: Technomic Publishing Co., New York.
Mojaddar Langroodi, A., Tajik, H. & Mehdizadeh, T. (2019). Antibacterial and antioxidant characteristics of Zataria multiflora Boiss essential oil and hydroalcoholic extract of Rhus coriaria L. Journal of Food Quality and Hazards Control, 6,16-24. 10.18502/jfqhc.6.1.454
Narmatha, R & Shanthi, K. (2022). Optimization of microbial fermentation of defatted biomass hydrolysate of mutant green microalga Tetradesmus dimorphus EMS2 for production of total phenolic content and antioxidant activity, Journal of Xi'an University of Architecture & Technology, 14(12), 44-56. doi.org/10.37896/JXAT14.12/316504
Narmatha, R., Dhandayuthapani, K., Kumar, R.R. & Shanthi, K. (2024). Bioethanol production from hydrolysate derived by ultrasonic pretreated defatted biomass of municipal wastewater grown mutant Tetradesmus dimorphus EMS2. Journal of Applied Biological Sciences, 18(1), pp.1-13. 10.5281/zenodo.10614059
Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova, A.E., Lysenko, A.M., Petrunyaka, V.V., Osipov, G.A., Belyaev, S.S. & Ivanov, M.V. (2001). Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. International journal of systematic and evolutionary microbiology, 51(2), 433-446. 10.1099/00207713-51-2-433
Prior, R.L., Wu, X. & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53, 4290- 4302.10.1021/jf0502698
Qian, Z.J., Kang, K.H., Ryu, B., Je, J.Y., Heo, S.J. & Oh, C. (2012). In vitro antioxidant activities of the fermented marine microalga Pavlova lutheri (Haptophyta) with the yeast Hansenula polymorpha. Journal of Phycology, 48, 475–482. 10.1111/j.1529-8817.2012.01117.x
Qureshi, M.N., Kuchekar, B.S., Logade, N.A. & Haleem, M.A. (2010). In-vitro antioxidant and in-vivo hepatoprotective activity of Leucas ciliata leaves. Records of Natural Products, 4, 124-130.
Reihani, S.F.S. & Khosravi-Darani, K. (2019). Influencing factors on single cell protein production by submerged fermentation: A review. Electron Journal of Biotechnology, 37, 34-40. 10.1016/j.ejbt.2018.11.005
Rollero, S., Roberts, S., Bauer, F.F & Divol, B. (2018). Agitation impacts fermentation performance as well as carbon and nitrogen metabolism in Saccharomyces cerevisiae under winemaking conditions. Australian Journal of Grape and Wine Research, 24(3), 360–367. 10.1111/ajgw.12338
Sander, K. & Murthy, G.S. (2010). Life cycle analysis of algae biodiesel. International Journal of Life Cycle Assess, 15, 704–714. 10.1007/s11367-010-0194-1
Sansone, C. & Brunet, C. (2019). Promises and challenges of microalgal antioxidant Production, Antioxidants, 8, 199. 10.3390/antiox8070199
Sarat Chandra, T., Suvidha, G., Mukherji, S., Chauhan, V.S., Vidyashankar, S., Krishnamurthi, K., Sarada, R. & Mudliar, S.N. (2014) Statistical optimization of thermal pretreatment conditions for enhanced biomethane production from defatted algal biomass. Bioresource Technology, 162, 157–165. doi.org/10.1016/j.biortech.2014.03.080
Singleton, V.L. & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–153. 10.5344/ajev.1965.16.3.144
Sorensen, M., Gong, Y., Bjarnason, F., Vasanth, G.K., Dahle, D., Huntley, M. & Kiron, V. (2017). Nannochloropsis oceania-derived defatted meal as an alternative to fishmeal in Atlantic salmon feeds. PLoS ONE, 12(7), e0179907. 10.1371/journal.pone.0179907
Tansakul, P., Savaddiraksa, Y., Prasertsan, P and Tongurai, C. (2005). Cultivation of the hydrocarbon-rich alga, Botyococcus braunii in secondary treated effluent from a seafood processing plant. Thai Journal of Agricultural Science, 38: 71-76.
Xu, D.P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J. & Li, H.B. (2017). Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. International Journal of Molecular Sciences, 18, 96. 10.3390/ijms18010096
Zakaria, N.A., Ibrahim, D., Sulaiman, S.F. & Supardy, A (2011). Assessment of antioxidant activity, total phenolic content and in-vitro toxicity of Malaysian red seaweed, Acanthophora spicifera. Journal of Chemical and Pharmaceutical Research, 3, 182-191.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)