Article Main

Samah Fathy Al-Sharabi Reeda Nathem Hamoo Baydaa Ghanim Mohammed

Abstract

Toxoplasmosis is one of the most important and prevalent disease affecting a wide range of hosts. It is caused by the parasite called T.gondii. The present study aimed to evaluate the blood glucose in serum in albino mice Balb/c induced  toxoplasmosis serum. Ten placenta samples were collected from aborted women from Al-Batoul and Al-Salam Hospital in Mosul city from October 2023 to December 2024 . Eighty mice were infected experimentally with toxoplasmosis (20 male and 20 female) by injecting tissue cysts isolated from the placenta into the peritoneal cavity of laboratory mice and five mice were dissected after each after 1, 2, 3, and 6 weeks post infection (p.i)).A serum was collected to determine the glucose and insulin levels, and the titer of anti-portant toxoplasma antibodies was measured using an ELISA kit. The number of tissue cysts in the impressions brain was numerate. Results showed an increase in glucose level concentration in all groups. The highest rate of glucose was recorded in infected males after the sixth week p.i (167.40±9.46)mg/dl. The highest increase in insulin levels was recorded in all infected groups (male and female) at all periods compared to control. Furthermore, There were significant differences in the rate of IgG antibody titer, as the highest rate of antibody concentration was recorded at the first-week p.i in female (0.54±0.06) titer .Also, the results showed significant differences in the number of cysts in all groups at the sixth week post–infected.


 

Article Details

Article Details

Keywords

Diabetes mellitus, ELISA ELISA , Insulin level , Toxoplasma gondii, Toxoplasmosis

References
Abdelhamid, G. A., Abdelaal, A. A., Shalaby, M. A., Fahmy, M. E. A., Badawi, M. A., Afife, A. A., & Fadl, H. O. (2023). Type-1 diabetes mellitus down-regulated local cerebral glial fibrillary acidic protein expression in experimental toxoplasmosis. Journal of Parasitic Diseases, 47(2), 319-32.
Al Hayali, S. S. (2002). An experimental study on Toxoplasma gondii isolates from human placentas and evaluating the efficacy of a number of antibiotics in its novel treatment in mice, Nineveh Governorate (Doctoral dissertation, PhD thesis) College of Science, Biology,University of Mosul, Iraq). https://library.alkafeel.net/dic.
Al-Halbousi, Y. R. S., & Al-Warid, H. S. (2024). FABP and Some Related Diabetic Parameters Among Adolescents with Toxoplasma gondii. Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(3), 11-18.‏ https://doi.org/10.30526/37.3.3440
Al-Khafajii, G. S., Al-Warid, H. S., & Al-Abbudi, F. A. (2021). The association between Toxoplasma gondii seropositive status and diabetes mellitus in obese and non-obese subjects in Baghdad. Iraqi Journal of Science, 1793-1803. DOI: 10.24996/ijs.2021.62.6.5‏
Almeria, S., & Dubey, J. P. (2021). Foodborne transmission of Toxoplasma gondii infection in the last decade. An overview. Research in Veterinary Science, 135, 371-385. https://doi.org/10.1016/j.rvsc.2020.10.019
Alshakir, B. A., Kuba, R. H., Zghair, K. H., & Ali, N. F. (2020). Relationship between Toxoplasmosis and Diabetic Pregnant Women. EXECUTIVE EDITOR, 11(02), 937.‏
Asgari, Q., Motazedian, M. H., Khazanchin, A., Mehrabani, D., & Naderi Shahabadi, S. (2021). High prevalence of Toxoplasma gondii infection in type I diabetic patients. Journal of Parasitology Research, 2021(1), 8881908.‏ https://doi.org/10.1155/2021/8881908
Beale, E. G. (2013). Insulin signaling and insulin resistance. Journal of Investigative Medicine, 61(1), 11-14. https://doi.org/10.2310/JIM.0b013e3182746f95
Beshay, E. V. N., El-Refai, S. A., Helwa, M. A., Atia, A. F., & Dawoud, M. M. (2018). Toxoplasma gondii as a possible causative pathogen of type-1 diabetes mellitus: Evidence from case-control and experimental studies. Experimental Parasitology, 188, 93-101. https://doi.org/10.1016/j.exppara.2018.04.007
Catchpole, A., Zabriskie, B. N., Bassett, P., Embley, B., White, D., Gale, S. D., & Hedges, D. (2023) Association between Toxoplasma gondii Infection and type-1 diabetes mellitus: a systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 20(5), 4436. https://doi.org/10.3390/ijerph20054436. ‏
Dubey, J. P. (1998). Refinement of pepsin digestion method for isolation of Toxoplasma gondii from infected tissues. Veterinary Parasitology, 74(1), 75-77. https://doi.org/10.1016/S0304-4017(97)00135-0.
El Saftawy, E. A., Turkistani, S. A., Alghabban, H. M., Albadawi, E. A., Ibrahim, B. E., Morsy, S., ... & Amin, N. M. (2023). Effects of Lactobacilli acidophilus and/or spiramycin as an adjunct in toxoplasmosis infection challenged with diabetes. Food and Waterborne Parasitology, 32, e00201.‏ https://doi.org/10.1016/j.fawpar.2023.e00201
El-Kady, A. M., Alzahrani, A. M., Elshazly, H., Alshehri, E. A., Wakid, M. H., Gattan, H. S., & Younis, S. S. Pancreatic Pathological Changes in Murine Toxoplasmosis and Possible Association with Diabetes Mellitus. Biomedicines, 11(1), 18. https://doi.org/10.3390/biomedicines11010018.
Gatkowska, J., Wieczorek, M., Dziadek, B., Dzitko, K., & Dlugonska, H. (2012). Behavioral changes in mice caused by Toxoplasma gondii invasion of brain. Parasitology Research, 111, 53-58. https://doi.org/10.1007/s00436-011-2800-y.
Graham, A. K., Fong, C., Naqvi, A., & Lu, J. Q. (2021). Toxoplasmosis of the central nervous system: Manifestations vary with immune responses. Journal of the Neurological Sciences, 420, 117223. https://doi.org/10.1016/j.jns.2020.117223
Imam, n. F., ismail, m. A., & bocktor, n. Z. (2022). Congenital toxoplasmosis: an overview on transmission, diagnosis and treatment with reference to egypt. Journal of the Egyptian Society of Parasitology, 52(2), 193-206.‏
Janssen, A. W., Stienstra, R., Jaeger, M., van Gool, A. J., Joosten, L. A., Netea, M. G., ... & Tack, C. J. (2021). Understanding the increased risk of infections in diabetes: innate and adaptive immune responses in type 1 diabetes. Metabolism, 121, 154795. https://doi.org/10.1016/j.metabol.2021.154795.
Kuruca, L., Belluco, S., Vieira-Pinto, M., Antic, D., & Blagojevic, B. (2023). Current control options and a way towards risk-based control of Toxoplasma gondii in the meat chain. Food Control, 146, 109556. https://doi.org/10.1016/j.foodcont.2022.109556
Li, Y. X., Xin, H., Zhang, X. Y., Wei, C. Y., Duan, Y. H., Wang, H. F., & Niu, H. T. (2018). Toxoplasma gondii Infection in Diabetes Mellitus Patients in China: Seroprevalence, Risk Factors, and Case‐Control Studies. BioMed Research international, 2018(1), 4723739.. https://doi.org/10.1155/2018/4723739
Liesenfeld, O. (2002). Oral infection of C57BL/6 mice with Toxoplasma gondii: a new model of inflammatory bowel disease?. The Journal of Infectious Diseases, 185(Supplement_1), S96-S101. https://doi.org/10.1086/338006
Maus, D., Curtis, B., Warschkau, D., Betancourt, E. D., Seeber, F., & Blume, M. (2024). Generation of Mature Toxoplasma gondii Bradyzoites in Human Immortalized Myogenic KD3 Cells. Bio-Protocol, 14(1). https://doi.org/10.21769%2FBioProtoc.4916.
Melvin, A., O’Rahilly, S., & Savage, D. B. (2018). Genetic syndromes of severe insulin resistance. Current opinion in genetics & Development, 50, 60-67. https://doi.org/10.1210/er.2010-0020.
Moudgil, A.D., Singla, L.D., Sharma, A. & Bal, M.S. First record of Toxoplasma gondii antibodiesin Royal Bengal tigers (Panthera tigris tigris) and Asiatic lion(Panthera leo persica) in India. Veterinaria Italiana, 2019, 55, 157-162. doi: https://doi.org/10.12834/VetIt.971.5066.3.
Oz, H. S. (2014). Toxoplasmosis, pancreatitis, obesity and drug discovery. Pancreatic Disorders & Therapy, 4(2).
Parasuraman, S., Balamurugan, S., Christapher, P.V., Petchi, R.R., Yeng, W.Y., Sujithra, J. & Vijaya, C. (2015). Evaluation of antidiabetic and antihyperlipidemic effects of hydroalcoholic extract of leaves of Ocimum tenuiflorum (Lamiaceae) and prediction of biological activity of its phytoconstituents. Pharmacognosy Research, 7(2), p.156. Pari, L., Karthikesan, K. & Menon, V.P., https://doi.org/10.4103%2F0974-8490.151457.
Pazoki, H., Ziaee, M., Anvari, D., Rezaei, F., Ahmadpour, E., Haghparast-Kenari, B., & Pagheh, A. S. (2020) Toxoplasma gondii infection as a potential risk for chronic liver diseases: A systematic review and meta-analysis. Microbial Pathogenesis, 149, 104578. https://doi.org/10.1016/j.micpath.2020.104578.
Prandota, J. (2013) T. Gondii infection acquired during pregnancy and/or after birth may be responsible for development of both type 1 and 2 diabetes mellitus. J. Diabetes. Metab. 4, 1–55. http://doi.org/10.4172/2155-6156.1000245.
Robert-Gangneux, F., & Dardé, M. L. (2012). Epidemiology of and diagnostic strategies for toxoplasmosis.Clinical Microbiology Reviews, 25(2), 264-296. https://doi.org/10.1128/cmr.05013-11
Robert-Gangneux, F., Aubert, D., & Villena, I. (2022). Toxoplasmosis: a widespread zoonosis diversely affecting humans and animals. In Zoonoses: Infections affecting humans and animals (pp. 1-27). Cham: Springer International Publishing(pp. 1-27). https://doi.org/10.1007/978-3-030-85877-3_14-1.
Semple, R. K., Savage, D. B., Cochran, E. K., Gorden, P., & O'Rahilly, S. (2011). Genetic syndromes of severe insulin resistance. Endocrine reviews, 32(4), 498-514. https://doi.org/10.1210/er.2010-0020
Shakiba, N., Farhadifar, F., & Zareei, M. (2020). Determine the IgG and IgM antibodies created against T. gondii infections using the ELISA method in diabetic pregnant women in compared with non-diabetic pregnant women in Sanandaj, Kurdistan, west of Iran.‏ISO 690 https://doi.org/10.21203/rs.3.rs-42507/v1.
Soares, G. L. D. S., Leão, E. R. L. P. D., Freitas, S. F., Alves, R. M. С., Tavares, N. D. P., Costa, M. V. N., & Diniz, C. W. P.(2022) . Behavioral and neuropathological changes after Toxoplasma gondii ocular conjunctival infection in BALB/c Mice. Frontiers in Cellular and Infection Microbiology.181. https://doi.org/10.3389/fcimb.2022.812152.
Soltani, S., Tavakoli, S., Sabaghan, M., Kahvaz, M. S., Pashmforosh, M., & Foroutan, M (2021). The probable association between chronic Toxoplasma gondii infection and type 1 and type 2 diabetes mellitus: a case-control study. Interdisciplinary Perspectives on infectious Diseases, 1-6. https://doi.org/10.1155/2021/2508780.
Trinder, P. (1969). Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Annals of Clinical Biochemistry, 6(1), 24-27. https://doi.org/10.1177/000456326900600108.
Ulvi, H., Yoldas, T., Müngen, B., & Yigiter, R. (2002). Continuous infusion of midazolam in the treatment of refractory generalized convulsive status epilepticus. Neurological Sciences, 23, 177-182. https://doi.org/10.1007/S100720200058.
Volpatti, L. R., Matranga, M. A., Cortinas, A. B., Delcassian, D., Daniel, K. B., Langer, R., & Anderson, D. G. (2019). Glucose-responsive nanoparticles for rapid and extended self-regulated insulin delivery. ACS nano, 14(1), 488-497.‏
Wulf, M. W. H., Van Crevel, R., Portier, R., Ter Meulen, C. G., Melchers, W. J. G., van der Ven, A. J. A. M., & Galama, J. M. D. (2005). Toxoplasmosis after renal transplantation: implications of a missed diagnosis. Journal of Clinical Microbiology, 43(7), 3544-3547. https://doi.org/10.1128/jcm.43.7.3544-3547.
Section
Research Articles

How to Cite

Effects of experimentally induced toxoplasmosis on blood glucose in albino mice Balb/c. (2024). Journal of Applied and Natural Science, 16(4), 1612-1617. https://doi.org/10.31018/jans.v16i4.6031