Anti-nephrotoxicity effect of bee and wasp venoms on rheumatoid arthritis-induced male albino rats (Rattus rattus)
Article Main
Abstract
Due to its beneficial benefits on diseases like rheumatoid arthritis, Hymenoptera venom acupuncture therapy is an alternative therapy for patients with various chronic diseases all over the world. The present study aimed to examine the modulatory effects of wasp venom (WV) and bee venom (BV) in the histological changes of the kidney caused by rheumatoid arthritis in male albino rats (Rattus rattus). The dose of 40 μg/Kg body weight of lyophilized bee and wasp venoms was administered intraperitoneally (i.p.) every day for 4 weeks. The rats were randomly divided into six groups: placebo administered DW; positive control only Complete Freund's Adjuvant (CFA) injected into the right hind paw; treatment groups treated with WV or BV injected with 100µl of CFA in the right hind paw with WV or BV (i.p.) which subdivided into subgroups: 2 subgroups treated with venom (WV or BV) i.p. for 4 weeks along with CFA, and another two subgroups treated after five days from CFA injection for 4 weeks. The rats were sacrificed and the kidneys were taken out and processed for histological study. In the positive control group, many histopathological alterations were observed, such as degenerative changes in both glomeruli and renal tubule, congestion, and inflammatory cells in the kidney. Sections of the kidney from the BV-treated group showed normal glomerulus and tubules in most sections with reducing degenerative alterations and congestion. In conclusion, the BV was more effective in reducing nephrotoxicity induced by CFA than WV, which had less efficiency in reducing degenerative changes.
Article Details
Article Details
Bee venom, Nephrotoxicity, Rats, Rheumatoid arthritis, Wasp venom
Abo-Zaid, M. A., Yatimi, K. A. & Ismail, A. H. (2023). The role of bee venom on immunological and hematological parameters in albino rats. Egyptian Journal of Immunology, 30(2), 11-25. https://pubmed.ncbi.nlm.nih.gov/37031 394/.
Abu-Zinadah, O., Rahmy, T., Alahmari, A. & Abdu, F. (2014). Effect of melittin on mice stomach. Saudi Journal of Biological Sciences, 21(1), 99–108. https://doi.org/10.1016/j.sjbs.2013.08.002.
Altaf, S. & Iqbal, T. (2023). Bee Venom Used for the Treatment of Rheumatoid Arthritis. Biomedical Journal of Scientific & Technical Research, 53(2), 44503-44507.https://ideas.repec.org/a/abf/journl/v53y2023i2p44503-44507.html.
An, H. J., Kim, K. H., Lee, W. R., Kim, J. Y., Lee, S. J., Pak, S. C., Park, K. K. (2015). Anti-fibrotic effect of natural toxin bee venom on animal model of unilateral ureteral obstruction. Toxins, 7(6), 1917–1928. https://doi.org/10.3390/toxins7061917.
Bancroft D J, & Stevens A. (1982). Theory and practice of histological techniques. 2nd Edition. Chrchill Livingstone. Medical Division of Longman Group Limitted.
Bhatia, A., Saikia, P. P., Dkhar, B., & Pyngrope, H. (2022). Anesthesia protocol for ear surgery in Wistar rats (animal research). Anim Models Exp Med., 5(2021), 183–188. https://pubmed.ncbi.nlm.nih.gov/35234372/.
Carpena, M., Nuñez-estevez, B., Soria-lopez, A. & Simal-gandara, J. (2020). Bee venom : an updating review of its bioactive molecules and its health applications. Nutrients, 12(3360), 1–27. https://doi.org/doi:10.3390/nu12113360.
Dongol, Y., Dhananjaya, B. L., Shrestha, R. K. & Aryal, G. (2014). Pharmacological and immunological properties of wasp venom. Pharmacology and Therapeutics, 49–83. https://doi.org/10.5772/52807.
Dumitru, C. D., Neacsu, I. A., & Grumezescu, A. M. (2022). Bee-derived products : chemical composition and applications in skin tissue bee-derived products : chemical composition and applications in skin tissue engineering. Pharmaceutics, 14, 1–30. https://doi.org/10.3390/pharmaceutics14040750.
El-Bassion, M. N., Mahfouz, H. M., Hussein, A. S., El-Hamamy, M. M., Daim, M. M. A., & Bufo, S. A. (2016). Effect of honey bee venom on cancer in rats model. Journal of Entomology, 13(3), 72–83. https://doi.org/10.3923/je.2016.72.83.
El-Kott, A. F., & Mohanny, K. M. (2015). The pharmaceutical Impacts of honeybee venom against thioacetamide-induced hepatic fibrosis in rats. Advances in Life Science and Technology, 31, 85-93. https://core.ac.uk/download/pdf/234687141.pdf.
El-wahed, A. A., Yosri, N., Sakr, H. H., Du, M., Algethami, A. F. M., Zhao, C., Masry, S. H. D. (2021). Wasp venom biochemical components and their potential in biological applications and nanotechnological interventions. Toxins, 13(206), 1–28. https://doi.org/10.3390/toxins13030206.
Eze, O. B. L., Nwodo, O. F. C. & Ogugua, V. N. (2016). Therapeutic effect of honey bee venom. J Pharm Chem Biol Sci , 4(1):48-53.
Han, J., You, D., Xu, X., Han, W., Lu, Y., Lai, R., & Meng, Q. (2008). An anticoagulant serine protease from the wasp venom of Vespa magnifica. Toxicon, 51(5), 914–922. https://doi.org/10.1016/j.toxicon.2008.01.002.
Hirata, Y., Atsumi, M., Ohizumi, Y., & Nakahata, N. (2003). Mastoparan binds to glycogen phosphorylase to regulate sarcoplasmic reticular Ca2+ release in skeletal muscle. Biochemical Journal, 371(1), 81-88. https://portlandpress.com/biochemj/article-abstract/371/1/81/39952/Mastoparan-binds-to-glycogen-phosphorylase-to.
Jalaei, J., Fazeli, M., Rajaian, H., & Shekarforoush, S. (2014). In vitro antibacterial effect of wasp (Vespa orientalis) venom. Journal of Venomous Animals and Toxins Including Tropical Diseases, 20(1), 22. https://doi.org/10.1186/1678-9199-20-22.
Kale, V. M., & Namdeo, A. G. (2014). Antiarthritic effect of galangin isolated from rhizomes of Alpinia officinarum in complete freund’s adjuvant-induced arthritis in rats. International Journal of Pharmacy and Pharmaceutical Sciences, 6(4), 499–505. https://www.innovareacademics.in/journal/ijpps/Vol6Issue4/9185.pdf.
Kim, H. W., Kwon, Y. B., Ham, T. W., Roh, D. H., Yoon, S. Y., Kang, S. Y., … Lee, J. H. (2004). General pharmacological profiles of bee venom and its water soluble fractions in rodent models. Journal of Veterinary Science, 5(4), 309–318. https://doi.org/200412309.
Kim, H., Hong, J. Y., Jeon, W. J., Baek, S. H., & Ha, I. H. (2020). Bee venom melittin protects against cisplatin-induced acute kidney injury in mice via the regulation of M2 macrophage activation. Toxins, 12(9), 574. https://www.mdpi.com/2072-6651/12/9/574.
Lee, J. D., Park, H. J., Chae, Y., & Lim, S. (2005). An overview of bee venom acupuncture in the treatment of arthritis. Evidence-Based Complementary and Alternative Medicine, 2(1), 79–84. https://doi.org/10.1093/ecam/neh070.
Luo, L., Kamau, P. M., & Lai, R. (2022). Bioactive peptides and proteins from wasp venoms. Biomolecules, 12(4), 527. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025469/.
Pak, S. C. (2016). An introduction to the toxins special issue on bee and wasp venoms: biological characteristics and therapeutic application. Toxins, 8(11), 1–6. https://doi.org/10.3390/toxins8110315.
Sadek, K. M., Shib, N. A., Taher, E. S., Rashed, F., Shukry, M., Atia, G. A., ... & Abdeen, A. (2024). Harnessing the power of bee venom for therapeutic and regenerative medical applications: an updated review. Frontiers in Pharmacology, 15, 1412245. https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.14122 45/full.
Seleem, A. A. (2016). The protective effect of bee venom against verapamil embryotoxicity during prenatal liver and kidney development of mice Mus musculus. The Journal of Basic & Applied Zoology, 75, 13–27. https://doi.org/10.1016/j.jobaz.2016.03.001.
Sharaf, S. E., Alsanosi, S., Alzahrani, A. R., Al-Ghamdi, S. S., Sharaf, S. E., & Ayoub, N. (2022). Knowledge, Attitude, and Practice of Bee Venom Acupuncture Therapy on Rheumatoid Arthritis Among Patients in Saudi Arabia. International Journal of General Medicine, 1171-1183. https://www.tandfonline.com/doi/full/10.2147/IJGM.S35 1315.
Smolen, J. S. & Aletaha, D. (2009). Developments in the clinical understanding of rheumatoid arthritis. Arthritis Research & Therapy, 9(1), 1–9. https://doi.org/10.1186/ar2535.
Smolen, J. S., Landewé, R. B. M., Bergstra, S. A., Kerschbaumer, A., Sepriano, A., Aletaha, D., …van der Heijde, D. (2023). EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis., 82(1):3-18. https://pubmed.ncbi.nlm.nih.gov/36357155/.
Tekeoğlu, İ., Akdoğan, M. & Çelik, İ. (2020). Investigation of anti-inflammatory effects of bee venom in experimentally induced adjuvant arthritis. Reumatologia, 58(5), 265-271. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7667938/.
Wu, Y. H., Zhang, Y., Fang, D. Q., Chen, J., Wang, J. A., Jiang, L., Lv, Z. F. (2022). Characterization of the composition and biological activity of the venom from Vespa bicolor Fabricius, a Wasp from South China. Toxins, 14, 59. https://pubmed.ncbi.nlm.nih.gov/35051036/.
Yang, S. H., Song, Y. H., Kim, T. H., Kim, S. B., Han, S. Y., Kim, H. S., & Oh, S. W. (2017). Acute pancreatitis and rhabdomyolysis with acute kidney injury following multiple wasp stings. Case Reports in Nephrology, 2017(1), 8596981. https://pubmed.ncbi.nlm.nih.gov/28706746/.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)