Neotectonic appraisal of Ramganga River basin, Eastern Kumaun, Himalaya, India
Article Main
Abstract
The Ramganga River flows from north to south and drains the northeastern (Lesser Himalaya) of the Himalaya. It transects with numerous active faults, thrusts, and litho-tectonic units before the confluence with the Saryu River at Rameshwar.The present study aimed to determine the virtue of geomorphic indices in appraising the status of neotectonic activity in the Ramganga River Valley, Eastern Kumaun, Himalaya. The watersheds and drainage network were extracted using the Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) DEM at 50000 and 100 Pixels threshold, derived18 sub-watersheds and detailed drainage network. Further, this study deciphered the relative neo-tectonic activity of the Ramganga river using the Index of Relative Active Tectonics (IRAT) based on various geomorphic indices Bifurcation Ratio (Br), channel sinuosity (Cs), Asymmetry Factor (Af), Hypsometric Integral (HI), Basin Elongation Ratio (Re), Drainage Density (Dd), Drainage Texture (Dt), and Stream Length Gradient (SL). These indices were classified into high, moderate and low to provide a rank to sub-basin for deriving the IRAT. The northeastern bank of Ramganga River shows high neo-tectonic activity, viz., stream length gradient (500- 1688), channel sinuosity (1.41- 1.48), and valley floor width to height ratio (0.11- 0.34) than southwestern parts.
Article Details
Article Details
Digital Elevation Model, Faults and Thrusts, Index of Relative Active Tectonics (IRAT), Morphotectonic Indices, Ramganga
Ahmed, F. & Rao, K. S. (2016). Hypsometric analysis of the Tuirini drainage basin: a geographic information system approach. Journal of the Indian Society of Remote Sensing, 44 (2), 273–280.
Ali, S.A. & Ikbal, J., (2020). Assessment of relative active tectonics in parts of Aravalli mountain range, India: implication of geomorphic indices, remote sensing, and GIS. Arab J Geosci 13, 57. https://doi.org/10.1007/s12517-019-5028-2
Anand, A.K. & Pradhan, S.P. (2019). Assessment of active tectonics from geomorphic indices and morphometric parameters in part of Ganga basin. J. Mt. Sci. 16, 1943–1961. https://doi.org/10.1007/s11629-018-5172-2
Anusree, K. K. Ajayakumar, A. Reghunath, R. & Santhosh, V. (2024). Morphometric and morphotectonic characteristics of a Tropical River Basin, North Kerala, India using geospatial technology. International Journal of River Basin Management, 1–20. https://doi.org/10.1080/157151 24.2024.2400690
Bashir, B. Abdullah A. Hussein, B. & Mahmoud, E. (2023). GIS Analysis for Active Tectonics Assessment of Wadi Al-Arish, Egypt. Applied Sciences 13, no. 4: 2659. https://doi.org/10.3390/app13042659
Beaumont, C. R.A. Jamieson, M.H. Nguyen, & Lee B. (2001). Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation, Nature, 414, 738-742. https://doi.org/10.1038/414738a
Bahrami, S. & Stokes, M. (2023). Analyzing drainage basin orientation and its relationship to active fold growth (Handun anticline, Zagros, Iran), Geomorphology, V- 426. https://doi.org/10.1016/j.geomorph.2023.108605.
Bull, W. & L.D. McFadden, (1977). Tectonic Geomorphology North and South of the Garlock fault. California, Journal of Geomorphology, 1, 15-32.
Cox, R. T. (1994). Analysis of drainage basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment. Geological Society of America Bulletin, 106(5), 571–581. https://doi.org/10.1130/0016-7606(1994)106%3C0571:AODBSA%3E2.3.CO;2
DeCelles, P.G. Robinson, D.M. Quade, J. Ojha, T.P. Garizone, C.N. Copeland, P. & Upreti, B.N. (2001). Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics, 20, 487–509. https://doi.org/10.1029/2000TC001226
Dewey, J.F. & Bird, J.M. (1970). Mountain Belts and the New Global Tectonics. J. Geophys. Res. 75 2625-2647. https://doi.org/10.1029/JB075i014p02625
Dowling, T.I. Richardson, D.P. O'Sullivan, A. Summerell, G.K. & Walker, J. (1998). Applications of the hypsometric integral and other terrain based metrices as indicators of catchment health: A preliminary analysis. CSIRO Land and Water, (Canberra). Technical Report 20/98, 49.
El Hamdouni, R. Irigaray, C. Fernández T. Chacón, J. & Keller, E.A. (2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain), Geomorphology, 96, 150–173. https://doi.org/10.1016/j.geomorph.2007.08.004
Eze, B.E. & Effiong, J. (2010). Morphometric Parameters of the Calabar River Basin: Implication for Hydrologic Processes. Journal of Geography and Geology, 2, 18-26. https://doi.org/10.5539/jgg.v2n1p18
Farooq, S. Khan, M.N. & Sharma, I. (2015). Assessment of Active Tectonics in Eastern Kumaon Himalaya on the Basis of Morphometric Parameters of Goriganga River Basin. IJAEES, 3(3), 14-21.
Gautam, P.K. Singh, D.S. Kumar, D. Singh, A.K. (2020). A GIS-based Approach in Drainage Morphometric Analysis of Sai River Basin, Uttar Pradesh, India. Journal of Geological Society of India, 95, 366–376. https://doi.org/10.1007/s12594-020-1445-9
Hack, J.T. (1973). Stream-profile analysis and stream-gradient index. United States Geological Survey Journal of Research, 1(4), 421–429.
Harrison, T. M. Grove, M. Lovera, O. M. & Catlos, E. J. (1998). A model for the origin of Himalayan anatexis and inverted metamorphism. Journal of Geophysical Research, 103, 27017–27032. https://doi.org/10.1029/98JB02468
Harrison, T. M. Ryerson, F. J. LeFort, P. Yin, A. Lovera, O. & Catlos, E. J. (1997). A late Miocene-Pliocene origin for the Central Himalayan inverted metamorphism, Earth Planet. Sci. Letter, 146, E1-E7. DOI:10.1016/S0012-821X(96)00215-4.
Horton, R.E. (1932). Drainage Basin Characteristics. Trans. Am. Geophys. Union, 13, 350-361.
Horton, R.E. (1945). Erosional Development of Streams and their Drainage Basins: Hydrophysical Approach to Quantitative Morphology. Geol. Soc. Am. Bull., 56: 275-370.
Kalpana. G. Kothyari, G.C. & Kotlia, B.S. (2023). Morphotectonic assessment of the Gaula river basin, Kumaun lesser Himalaya, Uttarakhand. Quaternary Science Advances, 12, 100- 115. https://doi.org/10.1016/j.qsa.2023.100115.
Keller, E.A. & Pinter, N. (2002). Active Tectonics: Earthquakes, Uplift and Landforms (2nd Edition). Prentice Hall, New Jersey, 362. ISBN: 0130882305.
Khan M.N. & Govil H. (2023). Assessment of On-going tectonic deformation in the Goriganga River Basin, Eastern Kumaon Himalaya Using Geospatial Technology. Journal of Applied and Natural Science, 15(4), 1679 – 1690.
Khan, M. N. Khudoyarova, S. S. Juraev, J. & Mamajanov, R. (2023). Field-based Tectonic Assessment and Spatial Correlation with Land Use and Land Cover in the Goriganga River Basin. Bulletin of Pure & Applied Sciences-Geology, 42F (1), 32–45.
https://doi.org/10.48165/bpas.2023.42F.1.4.
Kothyari G.C. & Pant P.D. (2008). Evidence of active deformation in the Northwestern part of Almora in Kumaon Lesser Himalaya: A geomorphic perspective. Jour. Geol. Soc. Ind., 72, 353-364.
Kothyari, G.C. Dumka, R.K. Singh, A.P. Chauhan, G. Thakkar, M.G. & Biswas, S.K. (2017). Tectonic evolution & stress pattern of South Wagad Fault at the Kachchh Rift Basin in western India. Geological Magazine. 154(4), 875-887. doi:10.1017/S0016756816000509.
Kothyari, G. C. Kandregula, R. S. & Luirei, K. (2017). Morphotectonic records of neotectonic activity in the vicinity of North Almora Thrust Zone Central Kumaun Himalaya. Geomorphology, 285, 272–286.
Kothyari, G.C. Kotlia, B.S. Talukdar, R. Pant, C.C. & Joshi, M. (2020). Evidences of neotectonic activity along Goriganga River, Higher Central Kumaun Himalaya, India. Geological Journal, 55 (9), 0072- 1050. https://doi.org/10.1002/gj.3791
Kothyari, G.C. Joshi, N. Taloor, A.K. Kandregula, R.S. Kotlia, B.S. Pant, C.C. & Singh, R.K. (2019). Landscape evolution and deduction of surface deformation in the Soan Dun, NW Himalaya, India. Quaternary International, 507, 302-323. https://doi.org/10.1016/j.quaint.2019.02.016.
Kothyari, G.C. & Luirei, K. (2016). Late Quaternary tectonic landforms and fluvial aggradation in the Saryu River valley: Central Kumaun Himalaya. Geomorphology, 268, 159-176. https://doi.org/10.1016/j.geomorph.2016.06.010.
Mahmood, S.A. & Gloaguen, R. (2012). Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geoscience Frontiers, 3(4), 407-428. https://doi.org/10.1016/j.gsf.2011.12.002
McKenzie, D. & Sclater, J.G. (1971). The Evolution of the Indian Ocean since the Late Cretaceous". Geophysical Journal International, 24 (5), 437.
Molnar, P. & Tapponnier, P. (1975). Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189, 419-426.
Muller, J. E. (1968). An introduction to the hydraulic and topographic sinuosity indexes. Annals Association of American geographers, 58, 371-385.
Pant, C.C. & Singh, S.P. (2017). Morphotectonic analysis of Kosi River basin in Kumaun Lesser Himalaya: an evidence of neotectonics. Arab J Geosci, 10, 421. https://doi.org/10.1007/s12517-017-3213-8.
Pant, P.D. Chauhan, R. & Bhakuni, S.S. (2012). Development of transverse fault along North Almora Thrust, Kumaun Lesser Himalaya, India: A study based on field and magnetic fabrics. J Geol Soc India, 79, 429–448. https://doi.org/10.1007/s12594-012-0068-1
Richards, A. Argles, T. Harris, N. Parrish, R. Ahmad, T. Darbyshire, F. & Draganits, E. (2005) Himalayan architecture constrained by isotopic tracers from clastic sediments: Earth Planet. Sci. Lett., 236, 773–796.
Schumm, S.A. (1956). Evolution of Drainage Systems and Slopes in Badlands at Perth Amboy, New Jersey. Geol. Soc. Am. Bull., 67, 597-646.
Silva, P.G. Goy, J.L. Zazo, C. & Bardajm, T. (2003). Fault-generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50(1-3), 203-225.
Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11), 1117–1142.
Strahler, A.N. (1964). Quantitative geomorphology of drainage basins and channel networks. In: V. T. Chow(ed), Handbook of Applied Hydrology. Mc GrawHill Book Company, New York, section 4-II.
Valdiya, K.S. (1992). Active Himalayan Frontal Fault Main Boundary Thrust and Ramgarh Thrust in Southern Kumaun. Journal of Geological Society of India, 40(6), 509–528.
Valdiya, K.S. (2010). The Making of India: Geodynamic Evolution. New Delhi, Macmillan Publishers India Ltd. 816. ISBN: 0230-32833-4.
Valdiya, K.S. (1980). Geology of the Kumaun Lesser Himalaya: Dehra Dun, India, Wadia Institute of Himalayan Geology, 291.
Vijith, H. & Satheesh, R. (2006). GIS based morphometric analysis of two major upland sub-watersheds of meenachil river in Kerala. J Indian Soc Remote Sens., 34, 181–185. https://doi.org/10.1007/BF02991823

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)