Article Main

Mohannad Hamid Jasim Othman maen AlKubaisi Lima Tariq Youash Lazar Thaer Abdulqader Salih Hajer Ammar abd allateef

Abstract

Cryptosporidiosis is a zoonotic disease caused by a protozoan parasite of the genus Cryptosporidium. It is widespread worldwide and is among the four main diarrhoea pathogens in children and adults. The present study aimed to investigate infection with the cryptosporidiosis in children under the age of eight years in both sexes who suffered from diarrhoea, and to evaluate the relationship of Interlukin-4 to parasitic infection and the changes in some serological parameters that included lipid profile and total protein. Two hundred fecal samples were collected from Ramadi Teaching Hospital for Women and Children. Microscopic examination of the samples stained with Ziehl–Neelsen stain and ELISA test indicated the presence of egg cysts in 23 samples, with a total percentage of (11.5%). The shape of the parasite was spherical, tending to oval, with a size of (4.8 to 5.7 micrometres). The lipid profile results showed that there was a significant increase in cholesterol (Ch.), triglycerides (TG.), low density lipoprotein (LDL), very low-density lipoprotein (vLDL), and for high-density lipoproteins (HDL) of the patient's group, there was no significant difference between the control group and the infected group at the (P ≤0.05). There was a significant increase in the level of blood proteins (Total Protein, Albumin, Globulin) for the infected group at a significant level (P≤0.05). The study also showed significant differences in interleukin-4 between patients and healthy people, which was 0.0444 ± 0.01141 pg/ml for patients (P≤0.05). Due to the increasing spread, seriousness, and epidemiology of the parasite, considered environmental pollution, and because of its lack of diagnosis in health departments (such as hospitals), and because its entry significantly stimulates the immune system, causes dehydration and death in children with weak immunity, and affects the absorption of fats, proteins, and vitamins significantly, a new factor IL-4 related to the infection was identified. It was also known how significant the effect of injury is on the amount of fats and proteins that are involved in the structure of living cell membranes.

Article Details

Article Details

Keywords

Cryptosporidium infection, Interleukin-4, Lipid profile, Low Density Lipoprotein, Protiens

References
Adkins, P. R. (2022). Cryptosporidiosis. Veterinary Clinics: Food Animal Practice, 38(1), 121-131. https://doi.org/10.1016/j.cvfa.2021.11.009
Aguirre, S. A., Perryman, L. E., Davis, W. C. & McGuire, T. C. (1998). IL-4 protects adult C57BL/6 mice from prolonged Cryptosporidium parvum infection: analysis of CD4+ αβ+ IFN-γ+ and CD4+ αβ+ IL-4+ lymphocytes in gut-associated lymphoid tissue during resolution of infection. The Journal of Immunology, 161(4), 1891-1900.‏ https://doi.org/10.4049/jimmunol.161.4.1891 .
Ahmed, S. A. A., Quattrocchi, A., Elzagawy, S. M., Karanis, P. & Gad, S. E. M. (2023). Diagnostic Performance of Toluidine Blue Stain for Direct Wet Mount Detection of Cryptosporidium Oocysts: Qualitative and Quantitative Comparison to the Modified Ziehl–Neelsen Stain. Diagnostics, 13(15), 2557.‏ https://doi.org/10.3390/diagnostics13152557 .
‏Al-Ani, L. J. & Al-Warid, H. S. (2023). Nutritional Status and Lipid Profile Among Children Infected with Giardia lamblia and Cryptosporidium. Iraqi Journal of Science, 2717-2725. https://doi.org/10.24996/ijs.2023.64.6.6
Bertuccini, L., Boussadia, Z., Salzano, A. M., Vanni, I., Passerò, I., Nocita, E. & Tosini, F. (2024). Unveiling Cryptosporidium parvum sporozoite-derived extracellular vesicles: profiling, origin, and protein composition. Frontiers in Cellular and Infection Microbiology, 14, 1367359.‏ Doi: 10.3389/fcimb.2024.1367359.
‏Bones, A. J., Jossé, L., More, C., Miller, C. N., Michaelis, M. & Tsaousis, A. D. (2019). Past and future trends of Cryptosporidium in vitro research. Experimental Parasitology, 196, 28-37.‏ doi: 10.1016/j.exppara.2018.12.001
Borowski, H., Thompson, R. C. A., Armstrong, T. & Clode, P. L. (2010). Morphological characterization of Cryptosporidium parvum life-cycle stages in an in vitro model system. Parasitology, 137(1), 13-26. DOI: https://doi.org/10.1017/S0031182009990837
Clarke, S. C. & McIntyre, M. (1996). Modified detergent Ziehl-Neelsen technique for the staining of Cyclospora cayetanensis. Journal of Clinical Pathology, 49(6), 511-512.‏ http://dx.doi.org/10.1136/jcp.49.6.511
Gerace, E., Presti, V. D. M. L. & Biondo, C. (2019). Cryptosporidium infection: epidemiology, pathogenesis, and differential diagnosis. European Journal of Microbiology and Immunology, 9(4), 119-123. DOI:10.1556/1886. 2019.00019.
González-Ruiz, A. & Bendall, R. P. (1995). Size matters: the use of the ocular micrometer in diagnostic parasitology. Parasitology Today, 11(2), 83-85. https://doi.org/10.1016/0169-4758(95)80125-1
Guérin, A., Strelau, K. M., Barylyuk, K., Wallbank, B. A., Berry, L., Crook, O. M., ... & Striepen, B. (2023). Cryptosporidium uses multiple distinct secretory organelles to interact with and modify its host cell. Cell Host & Microbe, 31(4), 650-664. https://doi.org/10.1016/j.chom.2023.03.001
Hill, P. G. (1985). The measurement of albumin in serum and plasma. Annals of Clinical Biochemistry, 22(6), 565-578.‏
Johnson, J., Buddle, R., Reid, S., Armson, A. & Ryan, U. M. (2008). Prevalence of Cryptosporidium genotypes in pre and post-weaned pigs in Australia. Experimental Parasitology, 119(3), 418-421.‏ https://doi.org/10.1016/j.exppara.2008.04.009
Koyun, O. Y., Balta, I., Corcionivoschi, N. & Callaway, T. R. (2023). Disease occurrence in-and the transferal of zoonotic agents by North American feedlot cattle. Foods, 12(4), 904.‏ https://doi.org/10.3390/foods12040904
Li, E., Saleem, F., Edge, T. A. & Schellhorn, H. E. (2021). Biological indicators for fecal pollution detection and source tracking: A review. Processes, 9(11), 2058.‏ https://doi.org/10.3390/pr9112058
Mahmoud, A., Haidy, G., Eman, M. & Nahla, H. (2018). Cryptosporidium parvum in clinical examined dairy calves; molecular and biochemical studies. Journal of the Egyptian Society of Parasitology (JESP),48(3), 535 – 542. https://doi.org/10.21608/jesp.2018.76551
Mead, J. R. (2023). Early immune and host cell responses to Cryptosporidium infection. Frontiers in Parasitology, 2, 1113950. ‏ https://doi.org/10.3389/fpara.2023.1113950
Nelson, J. B., O’Hara, S. P., Small, A. J., Tietz, P. S., Choudhury, A. K., Pagano, R. E. & LaRusso, N. F. (2006). Cryptosporidium parvum infects human cholangiocytes via sphingolipid‐enriched membrane microdomains. Cellular Microbiology, 8(12), 1932-1945. doi: 10.1111/j.1462-5822.2006. 00759.x‏
Pal, M., Tafese, W., Tilahun, G. & Anberber, M. (2016). Cryptosporidiosis: An emerging food and waterborne protozoan disease of global significance. Beverage & Food World, 43(1), 43-5.‏
Pardy, R. D., Walzer, K. A., Wallbank, B. A., Byerly, J. H., O’Dea, K. M., Cohn, I. S., ... & Hunter, C. A. (2024). Analysis of intestinal epithelial cell responses to Cryptosporidium highlights the temporal effects of IFN-γ on parasite restriction. Plos Pathogens, 20(5), e1011820. https://doi.org/10.1371/journal.ppat.1011820 .
Razakandrainibe, R., Mérat, C., Kapel, N., Sautour, M., Guyot, K., Gargala, G., ... & Favennec, L. (2021). Multicenter evaluation of an ELISA for the detection of Cryptosporidium spp. antigen in clinical human stool samples. Microorganisms, 9(2), 209.‏ https://doi.org/10.3390/microorganisms9020209
Ryan, U., Hijjawi, N. & Xiao, L. (2018). Foodborne cryptosporidiosis. International Journal for Parasitology, 48(1), 1-12.‏ https://doi.org/10.1016/j.ijpara.2017.09.004
Shakir, M. J., & Hussein, A. A. (2014). Assessment of serum interleukin-2, -4 and C-reactive protein levels in patients with giardiasis and cryptosporidiosis. Journal of the Faculty of Medicine Baghdad, 56(3), 313-317. https://doi.org/10.32007/jfacmedbagdad.563516 ‏
Sharma, S. P. & Busang, M. (2016). Cryptosporidium infection in pigs determined by two different methods and its impact on farm environment in southern Botswana.‏ Botswana Journal of Agriculture and Applied Sciences 11 (Issue 1): 29-34.
Sonzogni-Desautels, K., Di Lenardo, T. Z., Renteria, A. E., Gascon, M. A., Geary, T. G. & Ndao, M. (2019). A protocol to count Cryptosporidium oocysts by flow cytometry without antibody staining. PLoS Neglected Tropical Diseases, 13(3), e0007259.‏
Sorvillo, F. J., Morrison, A. C. & Berlin, O. G. W. (2001). Vector-borne transmission. Epidemiologic Methods for the Study of Infectious Diseases, 249-65.
Tamomh, A. G., Agena, A. M., Elamin, E., Suliman, M. A., Elmadani, M., Omara, A. B. & Musa, S. A. (2021). Prevalence of cryptosporidiosis among children with diarrhoea under five years admitted to Kosti teaching hospital, Kosti City, Sudan. BMC Infectious Diseases, 21, 1-6.‏ doi: 10.17420/ap6704.397
Zhang, H., Guo, F. & Zhu, G. (2015). Cryptosporidium lactate dehydrogenase is associated with the parasitophorous vacuole membrane and is a potential target for developing therapeutics. PLoS Pathogens, 11(11), e1005250.‏ https://doi.org/10.1371/journal.ppat.1005250
Section
Research Articles

How to Cite

Evaluation of interleukin-4 and some serological factors in children infected with cryptosporidiosis at Ramadi Teaching Hospital for women and children. (2024). Journal of Applied and Natural Science, 16(4), 1485-1491. https://doi.org/10.31018/jans.v16i4.5923