An overview of the therapeutic potential of understudied lichen species for novel drug discovery
Article Main
Abstract
Due to the emergence of new diseases, drug discovery is an ever-exciting field of science. Researchers have shifted their focus from chemical-based medicines to drugs of natural origin and their structural synthetic analogues to solve the problem of developing antibiotic resistance and the detrimental impacts of existing chemical medications. Lichens are still one of the least explored natural sources for drug discovery. These slow-growing forms are a rich source of some exceptional secondary metabolites known collectively as lichenochemicals. The significant proportion of these lichenochemicals are bioactive compounds with multiple pharmacological properties, including antimicrobial, anticancer, free radical scavenging, anti-inflammatory, antidiabetic and neuroprotective abilities and are also high in nutritional values, making this uncanny combination of algae and fungi, together with their metabolites, so well renowned in traditional and indigenous medicine. Although only oral knowledge was available about them earlier, studies over the last few decades have isolated and identified some unique bioactive compounds with high medicinal values, making lichen biology one of the most interesting and promising areas of pharmacological research. More than half of the lichen species and phytochemicals are yet to be explored. However, lichen-derived vitamin D3 is the only vegan source of vitamin D3. Likewise, studies have shown that lichenochemicals can significantly reduce the problem of antibiotic resistance developed by microorganisms. Advanced techniques in identification and isolation, combined with bioinformatics, predictive software, and databases, have greatly aided in understanding lichen chemistry. This review summarizes the use of lichens in drug discovery with a highlight on recent breakthroughs in lichen biology.
Article Details
Article Details
Antibiotic resistance, Antimicrobial, Drug discovery, Lichenochemicals, Lichens
Abdullah, S. M., Kolo, K. & Sajadi, S. M. (2020). Greener pathway toward the synthesis of lichen-based ZnO@TiO2@SiO2 and Fe3O4@SiO2 nanocomposites and investigation of their biological activities. Food Science & Nutrition., 8(8), 4044–4054. https://doi.org/10.1002/fsn3.1661.
Adenubi, O. T., Famuyide, I. M., McGaw, L. J. & Eloff, J. N. (2022). Lichens: An update on their ethnopharmacological uses and potential as sources of drug leads. Journal of Ethnopharmacology., 298, 115657. https://doi.org/10.1016/j.jep.2022.115657
Airaksinen, M. M., Peura, P., &Antere, S. (1986). Toxicity of Iceland lichen and reindeer lichen. Archives of toxicology., Supplement, 9, 406–409. https://doi.org/10.1007/978-3-642-71248-7_81.
Alavi, M., Karimi, N. &Valadbaeigi, T. (2019). Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via Protoparmeliopsismuralis lichen aqueous extract against multi-drug-resistant bacteria. ACS Biomaterials Science & Engineering, 5(9), 4228-4243. https://doi.org/10.1021/acsbiomaterials.9b00274
Ali Alasmary, F., Kumar Rajaram, S., Ramalingam, R. J., Moorthy Innasimuthu, G., Sankar, K., Stephen Muthaiah, S., Alkahtani, A. A., Salem Almalki, A., & Mohammed Alhajri, H. (2022). Titanium dioxide nanoparticles fabrication from Parmotremaaustrosinense (Zahlbr.) Hale extracts and its antimicrobial efficacy against plant pathogens. Inorganic Chemistry Communications, 145, 110007. https://doi.org/10.1016/j.inoche.2022.110007.
Alqahtani, M. A., Al Othman, M. R., & Mohammed, A. E. (2020). Biofabrication of silver nanoparticles with antibacterial and cytotoxic abilities using lichens. Scientific Reports, 10(1), 16781. https://doi.org/10.1038/s41598-020-73683-z.
Aoussar, N., Laasri, F. E., Bourhia, M., Manoljovic, N., Mhand, R. A., Rhallabi, N., Ullah, R., Shahat, A. A., Noman, O. M., Nasr, F. A., Almarfadi, O. M., El Mzibri, M., Vasiljević, P., Benbacer, L., &Mellouki, F. (2020). Phytochemical analysis, cytotoxic, antioxidant, and antibacterial activities of lichens. Evidence-Based Complementary and Alternative Medicine, 2020, 8104538. https://doi.org/10.1155/2020/8104538
Arora, N., &Philippidis, G. P. (2023). The prospects of algae-derived vitamins and their precursors for sustainable cosmeceuticals. Processes, 11(2), 587. https://doi.org/10.3390/pr11020587
Benedik, E. (2022). Sources of vitamin D for humans. International Journal for Vitamin and Nutrition Research. InternationaleZeitschrift fur Vitamin- und Ernahrungsforschung. Journal International de Vitaminologie et de Nutrition, 92(2), 118–125. https://doi.org/10.1024/0300-9831/a000733
Bhagarathi, L. K., Maharaj, G., DaSilva, P. N. B., & Subramanian, G. (2022). A review of the diversity of lichens and what factors affect their distribution in the neotropics. GSC Biological and Pharmaceutical Sciences, 20(03), 027–063. https://doi.org/10.30574/gscbps.2022.20.3.0348.
Binarová, P., & Tuszynski, J. (2019). Tubulin: Structure, Functions and Roles in Disease. Cells, 8(10), 1294. https://doi.org/10.3390/cells8101294
Biswas, K. (1947). The lichen flora of India. Journal of the Royal Asiatic Society of Bengal Science, 13, 75-113.
Biswas, K. (1956). Common medicinal plants of Darjeeling and the Sikkim Himalayas. West Bengal Government Press.
Bondarenko, V., Kelley, L., & Argyle, D. (2022). Fractionated Lichen Parmelia vagansExtract Exhibits Two distinct Antiproliferative Activities Against Human Cancer Cells. The FASEB Journal, 36.
Cansaran-Duman, D., Yangın, S., & Çolak, B. (2021). The role of vulpinic acid as a natural compound in the regulation of breast cancer-associated miRNAs. Biological Research, 54(1), 37. https://doi.org/10.1186/s40659-021-00360-4
Cardile, V., Graziano, A. C. E., Avola, R., Madrid, A., & Russo, A. (2022). Physodic acid sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis. Toxicology in Vitro, 84, 105432. https://doi.org/10.1016/j.tiv.2022.105432
Chang, W., Li, Y., Zhang, L., Cheng, A., Liu, Y., & Lou, H. (2012). Retigeric acid B enhances the efficacy of azoles combating the virulence and biofilm formation of Candida albicans. Biological & Pharmaceutical Bulletin, 35(10), 1794–1801. https://doi.org/10.1248/bpb.b12-00511.
Chauhan, N. S. (1999). Medicinal and aromatic plants of Himachal Pradesh. New Delhi: Indus Publishing Company.
Crawford, S. D. (2019). Lichens used in traditional medicine. In Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential (pp. 31-97). Springer. https://doi.org/10.1007/978-3-030-16814-8_2
Dela Cruz, T. E. E., Timbreza, L. P., Sangvichien, E., Notarte, K. I. R., & Santiago, K. A. A. (2023). Comparative Study on the Antimicrobial Activities and Metabolic Profiles of Five Usnea Species from the Philippines. Journal of fungi (Basel, Switzerland), 9(11), 1117. https://doi.org/10.3390/jof9111117
Delebassée, S., Mambu, L., Pinault, E., Champavier, Y., Liagre, B., & Millot, M. (2017). Cytochalasin E in the lichen Pleurosticta acetabulum: Anti-proliferative activity against human HT-29 colorectal cancer cells and quantitative variability. Fitoterapia, 121, 146–151. https://doi.org/10.1016/j.fitote.2017.07.015.
Devkota, S., Chaudhary, R. P., Werth, S., & Scheidegger, C. (2017). Indigenous knowledge and use of lichens by the lichenophilic communities of the Nepal Himalaya. Journal of Ethnobiology and Ethnomedicine, 13(1), 15. https://doi.org/10.1186/s13002-017-0142-2
Diwakar, Y., Chitra, V., & Evelyn Sharon, S. (2019). Study of Parmelia perlata for its potential as anti-inflammatory and antiarthritic agent using in vitro model. Asian Journal of Pharmaceutical and Clinical Research, 12(1), 95. https://doi.org/10.22159/ajpcr.2019.v12i1.28 597.
Dobrescu, D., Tănăsescu, M., Mezdrea, A., Ivan, C., Ordosch, E., Neagoe, F., Rizeanu, A., Trifu, L., & Enescu, V. (1993). Contributions to the complex study of some lichens-Usnea genus. Pharmacological studies on Usnea barbata and Usnea hirta species. Romanian Journal of Physiology: Physiological Sciences, 30(1-2), 101–107.
Dwarakanath, P. R., Abinaya, K., Nagasathya, K., Meenakumari, S., Gopinath, S. C., & Raman, P. (2022). Profiling secondary metabolites from lichen “Parmotrema perlatum (Huds.) M.Choisy” and antibacterial and antioxidant potentials. Biomass Conversion and Biorefinery, 14, 16461-16471. https://doi.org/10.1007/s13399-022-03572-0
Erfani, S., Valadbeigi, T., Aboutaleb, N., Karimi, N., Moghimi, A., &Khaksari, M. (2020). Usnic acid improves memory impairment after cerebral ischemia/reperfusion injuries by anti-neuroinflammatory, anti-oxidant, and anti-apoptotic properties. Iranian Journal of Basic Medical Sciences, 23(9), 1225–1231. https://doi.org/10.22038/ijbms.2020.43280.10165
Fang, H., Labandeira, C. C., Ma, Y., Zheng, B., Ren, D., Wei, X., Liu, J., & Wang, Y. (2020). Lichen mimesis in mid-Mesozoic lacewings. eLife, 9, e59007. https://doi.org/10.7554/eLife.59007.
Fernández-Moriano, C., Divakar, P. K., Crespo, A., & Gómez-Serranillos, M. P. (2017). In vitro neuroprotective potential of lichen metabolite fumarprotocetraric acid via intracellular redox modulation. Toxicology and Applied Pharmacology, 316, 83–94. https://doi.org/10.1016/j.taap.2016.12.020
Francolini, I., Norris, P., Piozzi, A., Donelli, G., &Stoodley, P. (2004). Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrobial Agents and Chemotherapy, 48(11), 4360–4365.
Gaikwad, S. B., Mapari, S. V., Sutar, R. R., Syed, M., Khare, R., & Behera, B. C. (2023). In vitro and in silico studies of lichen compounds atranorin and salazinic acid as potential antioxidant, antibacterial and anticancer agents. Chemistry & Biodiversity, 20(12), e202301229. https://doi.org/10.1002/cbdv.202301229
Garlick, J. M., Sturlis, S. M., Bruno, P. A., Yates, J. A., Peiffer, A. L., Liu, Y., Goo, L., Bao, L., De Salle, S. N., Tamayo-Castillo, G., Brooks, C. L., 3rd, Merajver, S. D., & Mapp, A. K. (2021). Norstictic Acid Is a Selective Allosteric Transcriptional Regulator. Journal of the American Chemical Society, 143(25), 9297–9302. https://doi.org/10.1021/jacs.1c03258
Garlick, J. M., Sturlis, S. M., Bruno, P. A., Yates, J. A., Peiffer, A. L., Liu, Y., Goo, L., Bao, L., De Salle, S. N., Tamayo-Castillo, G., Brooks, C. L., 3rd, Merajver, S. D., & Mapp, A. K. (2021). Norstictic Acid Is a Selective Allosteric Transcriptional Regulator. Journal of the American Chemical Society, 143(25), 9297–9302. https://doi.org/10.1021/jacs.1c03258
Gehlot, V., Mahant, S., Vijayraghwan, P., Das, K., Hoda, S., & Das, R. (2015). Therapeutic potential of lichen Parmeliaperlata against dual drug-resistant Helicobacter pylori isolates. International Journal of Pharmacy and Pharmaceutical Sciences, 8, 205-208.
Geraldes, V., & Pinto, E. (2021). Mycosporine-like amino acids (MAAs): Biology, chemistry and identification features. Pharmaceuticals (Basel, Switzerland), 14(1), 63. https://doi.org/10.3390/ph14010063.
Goga, M., Baláž, M., Daneu, N., Elečko, J., Tkáčiková, Ľ., Marcinčinová, M., &Bačkor, M. (2021). Biological activity of selected lichens and lichen-based Ag nanoparticles prepared by a green solid-state mechanochemical approach. Materials Science & Engineering C, Materials for Biological Applications, 119, 111640. https://doi.org/10.1016/j.msec.2020.111640
Gökalsın, B., &Sesal, N. C. (2016). Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa. World Journal of Microbiology & Biotechnology, 32(9), 150. https://doi.org/10.1007/s11274-016-2105-5 1.
Goyal, P., Verma, S. K., & Sharma, A. K. (2018). Evaluation of antiurolithiatic effects of Parmeliaperlata against calcium oxalate calculi in hyperoxaluric rats. Journal of Applied Pharmaceutical Science, 8(1), 129-135. https://doi.org/10.7324/JAPS.2018.8119 2.
Grimm, M., Grube, M., Schiefelbein, U., Zühlke, D., Bernhardt, J., & Riedel, K. (2021). The lichens’ microbiota, still a mystery? Frontiers in Microbiology, 12, 623839. https://doi.org/10.3389/fmicb.2021.623839
Hassan, S. T. S., Šudomová, M., Berchová-Bímová, K., Šmejkal, K., & Echeverría, J. (2019). Psoromic acid, a lichen-derived molecule, inhibits the replication of HSV-1 and HSV-2, and inactivates HSV-1 DNA polymerase: Shedding light on antiherpetic properties. Molecules (Basel, Switzerland), 24(16), 2912. https://doi.org/10.3390/molecules24162912.
Huang, X., Ma, J., Wei, L., Song, J., Li, C., Yang, H., Du, Y., Gao, T., & Bi, H. (2018). An antioxidant α-glucan from Cladinarangiferina (L.) Nyl. and its protective effect on alveolar epithelial cells from Pb2±induced oxidative damage. International Journal of Biological Macromolecules, 112, 101–109. https://doi.org/10.1016/j.ijbiomac.2018.01.123
Hussain, M., Bakhsh, H., Syed, S. K., Ullah, M. S., Alqahtani, A. M., Alqahtani, T., Aldahish, A. A., Emran, T. B., Rehman, K. U., &Janbaz, K. H. (2021). The spasmolytic, bronchodilator, and vasodilator activities of Parmotremaperlatum are explained by anti-muscarinic and calcium antagonistic mechanisms. Molecules, 26(21), 6348. https://doi.org/10.3390/molecules26216348
Kalra, R., Conlan, X. A., Areche, C., Dilawari, R., & Goel, M. (2021). Metabolite profiling of the Indian food spice lichen, Pseudeverniafurfuracea combined with optimised extraction methodology to obtain bioactive phenolic compounds. Frontiers in Pharmacology, 12, 629695. https://doi.org/10.3389/fphar.2021.629695
Kello, M., Goga, M., Kotorova, K., Sebova, D., Frenak, R., Tkacikova, L., &Mojzis, J. (2023). Screening evaluation of antiproliferative, antimicrobial and antioxidant activity of lichen extracts and secondary metabolites in vitro. Plants (Basel, Switzerland), 12(3), 611. https://doi.org/10.3390/plants12030611 .
Killari, K. N., Polimati, H., Prasanth, D. S. N. B. K., Singh, G., Panda, S. P., Vedula, G. S., &Tatipamula, V. B. (2023). Salazinic acid attenuates male sexual dysfunction and testicular oxidative damage in streptozotocin-induced diabetic albino rats. RSC Advances, 13(19), 12991–13005. https://doi.org/10.1039/d3ra01542d
Kumar, P., Kumar, S., & Kumar, S. A. (2016). Pharmacological and phytochemical aspects of lichen Parmeliaperlata: A review. Journal of Applied Pharmaceutical Science, 7(1), 102-107.
Kumar, R., Omsatyam, Yadav, M., Kumari, R., & Singh, B. (2023). Phyto-pharmacological activity and novel aspect of lichen Parmeliaperlata: A review. International Journal of Creative Research Thoughts (IJCRT), 11(2), Article IJCRT2302135. ISSN: 2320-2882.
Lee, S., Suh, Y. J., Yang, S., Hong, D. G., Ishigami, A., Kim, H., Hur, J. S., Chang, S. C., & Lee, J. (2021). Neuroprotective and anti-inflammatory effects of evernic acid in an MPTP-induced Parkinson’s disease model. International Journal of Molecular Sciences, 22(4), 2098https://doi.org/10.3390/ijms22042098.
Leela, K., &Anchanadevi, C. (2017). Isolation, purification and application of secondary metabolites from seaweed Hypneacervicornis. International Journal of Approximate Reasoning, 5, 380-395.
Liu, Y. Q., Ji, Y., Li, X. Z., Tian, K. L., Young, C. Y., Lou, H. X., & Yuan, H. Q. (2013). Retigeric acid B-induced mitophagy by oxidative stress attenuates cell death against prostate cancer cells in vitro. Acta pharmacologica Sinica, 34(9), 1183–1191. https://doi.org/10.1038/aps.2013.68
Liu, Y., Ji, Y., Li, X., Tian, K., Yf Young, C., Lou, H., & Yuan, H. (2013). Retigeric acid B-induced mitophagy by oxidative stress attenuates cell death against prostate cancer cells in vitro. Acta Pharmacologica Sinica.
Liu, Y., Wang, Z. P., Banne, S., Guo, J., & He, Y. (2019). Toward the Total Synthesis of Scabrosins: Synthesis of a Desulfur-scabrosin Skeleton and Its Stereoisomers. The Journal of organic chemistry, 84(9), 5838–5845. https://doi.org/10.1021/acs.joc.9b00015
Liu, Y., Yue, C., Li, J., Wu, J., Wang, S., Sun, D., Guo, Y., Lin, Z., Zhang, D., & Wang, R. (2018). Enhancement of cisplatin cytotoxicity by Retigeric acid B involves blocking DNA repair and activating DR5 in prostate cancer cells. Oncology Letters, 15(3), 2871–2880. https://doi.org/10.3892/ol.2017.7664
Ljubic, A., Jacobsen, C., Holdt, S. L., & Jakobsen, J. (2020). Microalgae Nannochloropsisoceanica as a future new natural source of vitamin D3. Food Chemistry, 320, 126627. https://doi.org/10.1016/j.foodchem.2020.126627.
Majchrzak-Celińska, A., Kleszcz, R., Studzińska-Sroka, E., Łukaszyk, A., Szoszkiewicz, A., Stelcer, E., Jopek, K., Rucinski, M., Cielecka-Piontek, J., &Krajka-Kuźniak, V. (2022). Lichen Secondary Metabolites Inhibit the Wnt/β-Catenin Pathway in Glioblastoma Cells and Improve the Anticancer Effects of Temozolomide. Cells, 11(7), 1084. https://doi.org/10.3390/cells11071084
Malhotra, S., Subban, R., & Singh, A. (2007). Lichens - role in traditional medicine and drug discovery. The Internet Journal of Alternative Medicine, 5(2). https://ispub.com/IJAM/5/2/40121.
Maulidiyah, M., Rachman, F., Mulkiyan, O. M. Z., Natsir, M., Nohong, N., Darmawan, A., Salim, O. A., & Nurdin, M. (2023). Antioxidant activity of usnic acid compound from methanol extract of lichen Usnea sp. Journal of Oleo Science, 72(2), 179–188. https://doi.org/10.5650/jos.ess22315
Mendili, M., Khadhri, A., Sabatini, F., Degano, I., &Aschi-Smiti, S. (2024). Parietin, the Vibrant Natural Dye in Xanthoriaparietina. Chemistry & biodiversity, 21(1), e202301357. https://doi.org/10.1002/cbdv.202301357
Mohammadi, M., Bagheri, L., Badreldin, A., Fatehi, P., Pakzad, L., Suntres, Z., & Van Wijnen, A. J. (2022). Biological effects of gyrophoric acid and other lichen-derived metabolites on cell proliferation, apoptosis, and cell signaling pathways. Chemico-Biological Interactions, 351, 109768. https://doi.org/10.1016/j.cbi.2021.109768.
Mohammadi, M., Zambare, V., Malek, L., Gottardo, C., Suntres, Z., & Christopher, L. (2020). Lichenochemicals: Extraction, purification, characterization, and application as potential anticancer agents. Expert Opinion on Drug Discovery, 15(5), 575–601. https://doi.org/10.1080/17460441.2020.1730325.
Murugesan, B., Subramanian, A., Bakthavachalam, S., Rajendran, K., Raju, S., & Gabriel, S. (2023). Molecular insights of anticancer potential of usnic acid towards cervical cancer target proteins: An in silico validation for novel anticancer compound from lichens. Journal of Biomolecular Structure & Dynamics, 1–19. Advance online publication. https://doi.org/10.1080/07391102.2023.22 52076
Nayaka, S. (2005). Studying lichens. Sahyadri E-News, Western Ghats Biodiversity Information System, Issue XVI.
Nayaka, S. C., & Haridas, B. (2020). Bioactive secondary metabolites from lichens. In Plant Metabolites: Methods, Applications and Prospects (pp. 255–290). Springer. https://doi.org/10.1007/978-981-15-5136-9_12
Nguyen, T.T., Vo, T., Tran, Y.H., Truong, D.T., Duy, Phan, C., & Le, P.H. (2021). Photoprotective Activity of Lichen Extracts and Isolated Compounds in Parmotrema Tinctorum. Biointerface Research in Applied Chemistry.
O’Neill, A. R., Badola, H. K., Dhyani, P. P., & Rana, S. K. (2017). Integrating ethnobiological knowledge into biodiversity conservation in the Eastern Himalayas. Journal of Ethnobiology and Ethnomedicine, 13, 21. https://doi.org/10.1186/s13002-017-0148-9.
Panicker, N. S. (2008). Evaluation of wound healing property of Parmelia sp. against diabetic foot ulcer-causing pathogens. Journal of Pharmaceutical Research, 12(3), 277-282.
Patil, S. B., Ghadyale, V. A., &Taklikar, S. S. (2011). Insulin secretagogue, alpha-glucosidase and antioxidant activity of some selected spices in streptozotocin-induced diabetic rats. Plant Foods for Human Nutrition, 66(1), 85-90. https://doi.org/10.1007/s11130-011-0215-7 1.
Paudel, B., Bhattarai, H. D., Koh, H. Y., Lee, S. G., Han, S. J., Lee, H. K., Oh, H., Shin, H. W., & Yim, J. H. (2011). Ramalin, a novel nontoxic antioxidant compound from the Antarctic lichen Ramalinaterebrata. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 18(14), 1285-1290. https://doi.org/10.1016/j.phymed.2011.05.008.
Peres, M. T., Cândido, A. C., Faccenda, O., Gianini, A. S., & Honda, N. K. (2016). Phytotoxicity of++ perlatolic acid and derivatives. Brazilian Archives of Biology and Technology, 59.
Petrzik, K., Koloniuk, I., Sehadová, H., & Sarkisova, T. (2019). Chrysoviruses inhabited symbiotic fungi of lichens. Viruses, 11(12), 1120. https://doi.org/10.3390/v11121120
Pham, N. K., Tran, N. M., Truong Nguyen, H., Pham, D., Nguyen, T., Nguyen, T. A., Nguyen, H., Do, T., Nguyen, N., & Duong, T. (2021). Design, modification, and bio-evaluation of salazinic acid derivatives. Arabian Journal of Chemistry, 15(1), 103535. https://doi.org/10.1016/j.arabjc.2021.103535.
Porada, P., Kleidon, A., & van Stan, J. T. (2018). Significant contribution of non-vascular vegetation to global rainfall interception. Nature Geoscience, 11(8), 563-+. https://doi.org/10.1038/s41561-018-0176-7.
Poulsen-Silva, E., Gordillo-Fuenzalida, F., Atala, C., Moreno, A. A., & Otero, M. C. (2023). Bioactive lichen secondary metabolites and their presence in species from Chile. Metabolites, 13(7), 805. https://doi.org/10.3390/metabo13070805
Pradhan, B. K., &Badola, H. K. (2008). Ethnomedicinal plant use by Lepcha tribe of Dzongu valley, bordering Khangchendzonga Biosphere Reserve, in North Sikkim, India. Journal of Ethnobiology and Ethnomedicine, 4, 22. https://doi.org/10.1186/1746-4269-4-22.
Puginier, C., Libourel, C., Otte, J., Skaloud, P., Haon, M., Grisel, S., Petersen, M., Berrin, J. G., Delaux, P. M., Dal Grande, F., & Keller, J. (2024). Phylogenomics reveals the evolutionary origins of lichenization in chlorophyte algae. Nature Communications, 15(1), 4452. https://doi.org/10.1038/s41467-024-48787-z
Radice, M., Manfredini, S., Ziosi, P., Dissette, V., Buso, P., Fallacara, A., & Vertuani, S. (2016). Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters: A systematic review. Fitoterapia, 114, 144–162. https://doi.org/10.1016/j.fitote.2016.09.003
Rahman, H. (2014). In vitro studies on antioxidant, hypolipidemic and cytotoxic potential of Parmeliape rlata. American Journal of Science, 2(6-1), 7-10.
Ranković, B., Kosanić, M., Stanojković, T., Vasiljević, P., & Manojlović, N. (2012). Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents. International Journal of Molecular Sciences, 13(11), 14707–14722. https://doi.org/10.3390/ijms131114707.
Rattan, R., Shukla, S., Sharma, B., & Bhat, M. (2021). A mini-review on lichen-based nanoparticles and their applications as antimicrobial agents. Frontiers in Microbiology, 12, 633090. https://doi.org/10.3389/fmicb.2021.633090.
Rethinavelu, G., Lavanya, M., Krishnamoorthy, S., Baskaran, N., &Sivanandham, V. (2023). Edible lichens and its unique bioactives: A review of its pharmacological and food applications. Food and Humanity, 1, 1598-1609. https://doi.org/10.1016/j.foohum.2023.1598
Russo, A., Caggia, S., Piovano, M., Garbarino, J., & Cardile, V. (2012). Effect of vicanicin and protolichesterinic acid on human prostate cancer cells: role of Hsp70 protein. Chemico-Biological Interactions, 195(1), 1–10. https://doi.org/10.1016/j.cbi.2011.10.003.
Safarkar, R., Ebrahimzadeh Rajaei, G., & Khalili-Arjaghi, S. (2020). The study of antibacterial properties of iron oxide nanoparticles synthesized using the extract of lichen Ramalina sinensis. Asian Journal of Nanoscience and Materials, 3(3), 157-166. https://doi.org/10.26655/AJNANOMAT.2020.3.1
Sahin, E., Dabagoglu, P. S., & Avan, S. (2021). Lichen-derived physodic acid exerts cytotoxic and anti-invasive effects in human lung cancer. RendicontiLincei. ScienzeFisiche e Naturali, 32, 511–520. https://doi.org/10.1007/s12210-021-00995-1.
Sahin, E., DabagogluPsav, S., Avan, I., Candan, M., Sahinturk, V., &Koparal, A. T. (2019). Vulpinic acid, a lichen metabolite, emerges as a potential drug candidate in the therapy of oxidative stress-related diseases, such as atherosclerosis. Human & Experimental Toxicology, 38(6), 675–684. https://doi.org/10.1177/0960327119833745
Salah, M. B., Aouadhi, C., Mendili, M., &Khadhri, A. (2022). Phenolic content, antioxidant, antibacterial, and anti-acetylcholinesterase activities of biosynthesized and characterized silver nanoparticles from Tunisian medicinal lichen species. International Journal of Medicinal Mushrooms, 24(6), 79–93. https://doi.org/10.1615/IntJMedMushrooms.2022043322
SalinRaj, P., Prathapan, A., Sebastian, J., Antony, A. K., Riya, M. P., Rani, M. R. P., & Raghu, K. G. (2014). Parmotrema tinctorum exhibits antioxidant, antiglycation and inhibitory activities against aldose reductase and carbohydrate digestive enzymes: An in vitro study. Natural Product Research, 28(18), 1465-1470. https://doi.org/10.1080/14786419.2014.926354 .
Sanders, W. B., & Masumoto, H. (2021). Lichen algae: The photosynthetic partners in lichen symbioses. Lichenologist, 53(5), 347-393. https://doi.org/10.1017/S0024282921000335
Sedrpoushan, A., Haghi, H., & Sohrabi, M. (2022). A new secondary metabolite profiling of the lichen Diploschistesdiacapsis using liquid chromatography electrospray ionization tandem mass spectrometry. Inorganic Chemistry Communications, 145, 110006. https://doi.org/10.1016/j.inoche.2022.110006
Shah, N. C. (1998). Lichens of economic importance from the hills of Uttar Pradesh, India. Journal of Herbs, Spices & Medicinal Plants, 5, 69-76.
Shailajan, S., Joshi, M., & Tiwari, B. (2014). Hepatoprotective activity of Parmeliaperlata (Huds.) Ach. against CCl4 induced liver toxicity in Albino Wistar rats. Journal of Applied Pharmaceutical Science, 4, 70-74.
Sharma, G. K. (2006). Ethnomedicinal flora: Ayurvedic system of medicine in a remote part of the Indo-Tibetan Himalayas. Journal of the Tennessee Academy of Science, 72, 53-54.
Shukla, V., Joshi, G. P., & Rawat, M. S. (2010). Lichens as a potential natural source of bioactive compounds: a review. Phytochemistry Reviews, 9, 303-314. https://doi.org/10.1007/s11101-010-9189-6 1.
Silva, H. A. M. F., Aires, A. L., Soares, C. L. R., Sá, J. L. F., Martins, M. C. B., Albuquerque, M. C. P. A., Silva, T. G., Brayner, F. A., Alves, L. C., Melo, A. M. M. A., & Silva, N. H. (2020). Barbatic acid from Cladiaaggregata (lichen): Cytotoxicity and in vitro schistosomicidal evaluation and ultrastructural analysis against adult worms of Schistosoma mansoni. Toxicology in Vitro, 65, 104771. https://doi.org/10.1016/j.tiv.2020.104771 2.
Simko, P., Leskanicova, A., Suvakova, M., Blicharova, A., Karasova, M., Goga, M., Kolesarova, M., Bojkova, B., Majerova, P., Zidekova, N., Barvik, I., Kovac, A., &Kiskova, T. (2022). Biochemical properties of atranorin-induced behavioral and systematic changes of laboratory rats. Life, 12(7), 1090. https://doi.org/10.3390/life12071090
Singh, G. (2023). Linking lichen metabolites to genes: Emerging concepts and lessons from molecular biology and metagenomics. Journal of Fungi, 9(2), 160. https://doi.org/10.3390/jof9020160
Singh, G., Calchera, A., Schulz, M., Drechsler, M., Bode, H. B., Schmitt, I., & Dal Grande, F. (2021). Climate-specific biosynthetic gene clusters in populations of a lichen-forming fungus. Environmental Microbiology, 23(8), 4260–4275. https://doi.org/10.1111/1462-2920.15605
Singh, P., Singh, P. K., Tondon, P. K., & Singh, K. P. (2018). Heavy metals accumulation by epiphytic foliose lichens as biomonitors of air quality in Srinagar city of Garhwal hills, Western Himalaya (India). Current Research in Environmental & Applied Mycology(Journal of Fungal Biology), 8(2), 282-289. https://doi.org/10.5943/cream/8/2/11
Sujetovienė, G. (2015). Monitoring lichen as indicators of atmospheric quality. In Recent Advances in Lichenology: Modern Methods and Approaches in Biomonitoring and Bioprospection (Vol. 1, pp. 87-118). Springer. https://doi.org/10.1007/978-81-322-2181-4_4
Sveshnikova, N., & Piercey-Normore, M. D. (2021). Transcriptome comparison of secondary metabolite biosynthesis genes expressed in cultured and lichenized conditions of Cladoniarangiferina. Diversity, 13(7), 330. https://doi.org/10.3390/d13070330
Syed Zameer Ahmed, K., Ahmed, S. S. Z., Thangakumar, A., & Krishnaveni, R. (2019). Therapeutic effect of Parmotrema tinctorum against complete Freund’s adjuvant-induced arthritis in rats and identification of novel isophthalic ester derivative. Biomedicine & Pharmacotherapy, 112, 108646. https://doi.org/10.1016/j.biopha.2019.108646
Tagirdzhanova, G., Saary, P., Cameron, E. S., Garber, A. I., Díaz Escandón, D., Goyette, S., Nogerius, V. T., Passo, A., Mayrhofer, H., Holien, H., Tønsberg, T., Stein, L. Y., Finn, R. D., &Spribille, T. (2023). Evidence for a core set of microbial lichen symbionts from a global survey of metagenomes. https://doi.org/10.1101/2023.02.02.524463
Tanwar, K., Mathur, J., &Kachhawa, J. (2015). Phytochemical investigation and anti-fertility activity of lichen Parmeliaperlata. International Journal of Recent Research and Review, 8(4).
Taş, İ., Han, J., Park, S. Y., Yang, Y., Zhou, R., Gamage, C. D. B., Van Nguyen, T., Lee, J. Y., Choi, Y. J., Yu, Y. H., Moon, K. S., Kim, K. K., Ha, H. H., Kim, S. K., Hur, J. S., & Kim, H. (2019). Physciosporin suppresses the proliferation, motility and tumourigenesis of colorectal cancer cells. Phytomedicine : international journal of phytotherapy and phytopharmacology, 56, 10–20. https://doi.org/10.1016/j.phymed.2018.09.219
Thakur, M., & Chander, H. (2021). Potential of lichens: A review of bioactive compounds with biological activities. Biological Forum – An International Journal, 13(1), 39-47. Retrieved from Research Trend
Türk, H., Yilmaz, M., Tay, T., Türk, A. O., & Kivanç, M. (2006). Antimicrobial activity of extracts of chemical races of the lichen Pseudeverniafurfuracea and their physodic acid, chloroatranorin, atranorin, and olivetoric acid constituents. Zeitschrift für Naturforschung C, Journal of Biosciences, 61(7-8), 499–507. https://doi.org/10.1515/znc-2006-7-812 .
Upreti, D. K., Bajpai, R., & Nayaka, S. (2015). Lichenology: Current research in India. In Plant Biology and Biotechnology (pp. 263-280).
Varlı, M., Bhosle, S. R., Kim, E., Yang, Y., Taş, İ., Zhou, R., Pulat, S., Gamage, C. D. B., Park, S. Y., Ha, H. H., & Kim, H. (2024). Usnic acid targets 14-3-3 proteins and suppresses cancer progression by blocking substrate interaction. JACS Au, 4(4), 1521–1537. https://doi.org/10.1021/jacsau.3c00774
Varol, M., Türk, A., Candan, M., Tay, T., &Koparal, A. T. (2016). Photoprotective activity of vulpinic and gyrophoric acids toward ultraviolet B-induced damage in human keratinocytes. Phytotherapy Research, 30(1), 9–15. https://doi.org/10.1002/ptr.5493
Wang, H. Y., Lin, X., Huang, G. G., Zhou, R., Lei, S. Y., Ren, J., Zhang, K. R., Feng, C. L., Wu, Y. W., & Tang, W. (2023). Atranorin inhibits NLRP3 inflammasome activation by targeting ASC and protects NLRP3 inflammasome-driven diseases. Acta Pharmacologica Sinica, 44(8), 1687–1700. https://doi.org/10.1038/s41401-023-01054-1
Wang, H., Lin, X., Huang, G., Zhou, R., Lei, S., Ren, J., Zhang, K., Feng, C., Wu, Y., & Tang, W. (2023). Atranorin inhibits NLRP3 inflammasome activation by targeting ASC and protects NLRP3 inflammasome-driven diseases. Acta Pharmacologica Sinica, 44, 1687-1700.
Wang, H., Lin, X., Huang, G., Zhou, R., Lei, S., Ren, J., Zhang, K., Feng, C., Wu, Y., & Tang, W. (2023). Atranorin inhibits NLRP3 inflammasome activation by targeting ASC and protects NLRP3 inflammasome-driven diseases. Acta Pharmacologica Sinica, 44, 1687-1700.
Wang, H., Xuan, M., Huang, C., & Wang, C. (2022). Advances in research on bioactivity, toxicity, metabolism, and pharmacokinetics of usnic acid in vitro and in vivo. Molecules, 27(21), 7469. https://doi.org/10.3390/molecules27217469.
Wang, H., Xuan, M., Huang, C., & Wang, C. (2022). Advances in research on bioactivity, toxicity, metabolism, and pharmacokinetics of usnic acid in vitro and in vivo. Molecules, 27(21), 7469. https://doi.org/10.3390/molecules27217469
Wang, T., Shen, C., Guo, F., Zhao, Y., Wang, J., Sun, K., Wang, B., Chen, Y., & Chen, Y. (2021). Characterization of a polysaccharide from the medicinal lichen, Usnea longissima, and its immunostimulating effect in vivo. International Journal of Biological Macromolecules, 181, 672–682. https://doi.org/10.1016/j.ijbiomac.2021.0 3.183
Weber, T., & Kim, H. U. (2016). The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production. Synthetic and Systems Biotechnology, 1(2), 69–79. https://doi.org/10.1016/j.synbio.2016.02.002
Yang, M., Devkota, S., Wang, L. & Scheidegger, C. (2021). Ethnolichenology—The use of lichens in the Himalayas and southwestern parts of China. Diversity, 13(7), 330. https://doi.org/10.3390/d13070330
Yang, Y., Bhosle, S. R., Yu, Y. H., Park, S. Y., Zhou, R., Taş, İ., Gamage, C. D. B., Kim, K. K., Pereira, I., Hur, J. S., Ha, H. H. & Kim, H. (2018). Tumidulin, a Lichen Secondary Metabolite, Decreases the Stemness Potential of Colorectal Cancer Cells. Molecules (Basel, Switzerland), 23(11), 2968. https://doi.org/10.3390/molecu les23112968
Zhao, Y., Wang, M. & Xu, B. (2020). A comprehensive review on secondary metabolites and health-promoting effects of edible lichen. Journal of Functional Foods, 80, 104283. https://doi.org/10.1016/j.jff.2020.104283.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)