Article Main

Puspakhi Borah Pankaj Das Ramashankar Bordoloi Sonot Deori Bhuban Chandra Chutia Rupam Dutta Chittaranjan Baruah

Abstract

Silkworms' Gut are home to various microorganisms, including viruses, fungi, and bacteria. Bacteria are the most prevalent and varied group, with more than 100 species known to exist. These bacteria are members of several phyla, such as Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes. A wide variety of beneficial bacteria are found in the gut of silkworms. Probiotics mainly influence some aspects of the immune system and gut health by interacting with the complex community of intestinal bacteria known as the gut microbiota. Certain bacteria produce essential vitamins, amino acids, and other nutrients, while others help break down dietary fibres. Silkworms are an invaluable model organism for gut microbiota research due to their significance in ecology and economy. The present review discusses the diversity and functions of bacteria in silkworm digestive tracts and explores potential applications of these microbes in other sectors of the economy. The findings of this study have highlighted the importance and potential of silkworm gut microbiota, as well as the prospective applications of these microbes in the future to enhance silkworm health and resistance to illness. Thus, comprehending the relationships between silkworms and the bacteria in their stomachs may offer fresh perspectives on the biology of these significant insects and open the door to the creation of innovative methods for increasing silk production.


 

Article Details

Article Details

Keywords

Lactobacillus, Probiotics, Sericulture, Silkworm

References
Ali, S., Khan, S. A., Hamayun, M. & Lee, I. J. (2023). The recent advances in the utility of microbial lipases: A review. Microorganisms, 11(2), 510. DOI:10.3390/microorganisms11020510
Amaning Danquah, C., Minkah, P. A. B., Osei Duah Junior, I., Amankwah, K. B. & Somuah, S. O. (2022). Antimicrobial compounds from microorganisms. Antibiotics, 11(3), 285 https://doi.org/10.3390/antibiotics11030285
Arasakumar, E & Vasanth, V & S., Vijay & Ganesan, Swathiga. (2023). Role of microorganisms in the gut of silkworms. The Pharma Innovation. 12. 2691-2696.
Arun, K. B., Madhavan, A., Sindhu, R., Emmanual, S., Binod, P., Pugazhendhi, A. & Pandey, A. (2021). Probiotics and gut microbiome Prospects and challenges in remediating heavy metal toxicity. Journal of Hazardous Materials, 420, 126676.  DOI: 10.1016/j.jhazmat.2021.126676
Attathom, T. (2004). Eri Silkworm, Philosamia ricini (Lepidoptera: Saturniidae). Encyclopedia of entomology, 800-802.
Baddeley, H. J. & Isalan, M. (2021). The application of CRISPR/Cas systems for antiviral therapy. Frontiers in Genome Editing, 3, 745559. DOI: 10.3389/fgeed.2021.745559
Bandyopadhyay, A., Chowdhury, S. K., Dey, S., Moses, J. C. & Mandal, B. B. (2019). Silk: a promising biomaterial opening new vistas towards affordable healthcare solutions. Journal of the Indian Institute of Science, 99(3), 445-487.doi:10.1007/s41745-019-00114-y
Barretto, D. A. & Vootla, S. K. (2018). Gc-Ms Analysis of bioactive compounds and antimicrobial activity of Cryptococcus rajasthanensis Ky627764 isolated from Bombyx mori gut microflora. International Journal of Advanced Research, 6(3), 525-538. DOI:10.21474/IJAR01/6700
Barretto, D. A. & Vootla, S. K. (2018). In vitro anticancer activity of Staphyloxanthin pigment extracted from Staphylococcus gallinarum KX912244, a gut microbe of Bombyx mori. Indian journal of microbiology, 58(2), 146-158. DOI:10.1007/s12088-018-0718-0
Barretto, D. A., Gadwala, M. & Vootla, S. K. (2021). The silkworm gut microbiota: A potential source for biotechnological applications. In Methods in Microbiology (Vol. 49, pp. 1-26). Academic Press. DOI:10.1016/bs.mim.2021.04.001
Barsagade, D. D. (2017). Tropical tasar sericulture. Industrial entomology, 291-319. DOI:10.1007/978-981-10-3304-9_10
Bhuyan, P. M., Gogoi, D. K., Neog, K. & Subramanian, S. (2014). Isolation and characterization of gut-bacteria of Muga silkworm (Antheraea assamensis Helfer) collected from different localities of Assam. Sericologia, 54(1), 28-35. doi: 10.1111/imb.12495
Bhuyan, P. M., Sandilya, S. P., Nath, P. K., Gandotra, S., Subramanian, S., Kardong, D. & Gogoi, D. K. (2018). Optimization and characterization of extracellular cellulase produced by Bacillus pumilus MGB05 isolated from midgut of muga silkworm (Antheraea assamensis Helfer). Journal of Asia-Pacific Entomology, 21(4), 1171-1181. https://doi.org/10.1016/j.aspen.2018.08.004
Chen, B., Du, K., Sun, C., Vimalanathan, A., Liang, X., Li, Y. & Shao, Y. (2018). Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. The ISME journal, 12(9), 2252-2262. doi: 10.1038/s41396-018-0174-1. 
Chen, B., Zhang, N., Xie, S., Zhang, X., He, J., Muhammad, A. & Shao, Y. (2020). Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environment International, 143, 105886. doi: 10.1016/j.envint.2020.105886. 
Chen, Y., Liu, G., Ali, M. R., Zhang, M., Zhou, G., Sun, Q. & Shirin, J. (2023). Regulation of gut bacteria in silkworm (Bombyx mori) after exposure to endogenous cadmium-polluted mulberry leaves. Ecotoxicology and Environmental Safety, 256, 114853. DOI: 10.1016/j.ecoenv.2023.114853
Chetia, H., Kabiraj, D., Singh, D., Mosahari, P. V., Das, S., Sharma, P. & Bora, U. (2017). De novo transcriptome of the muga silkworm, Antheraea assamensis (Helfer). Gene, 611, 54-65. doi: 10.1016/j.gene.2017.02.021.
Das, P., Borah, P., Bordoloi, R., Pegu, A., Dutta, R. & Baruah, C. (2024). Probiotic bacteria as a healthy alternative for fish and biological control agents in aquaculture. Journal of Applied and Natural Science, 16(2), 674-689. DOI:10.31018/jans. v16i2.5543
Devi, B S., Chutia, M. & Bhattacharyya, N. (2021). Food plant diversity, distribution, and nutritional aspects of the endemic golden silk producing silkworm,Antheraea assamensis– a review. Wiley, 169(3), 237-248. https://doi.org/10.1111/eea.13021
Devi, Y. R., Lourembam, D. S., Modak, R., Shantibala, T., Subharani, S. & Rajashekar, Y. (2022). Comparison of Gut Microbiota between Midgut of Healthy and Tiger Band Disease Infected Oak Tasar Silkworm, Antheraea proylei J. Entomology and Applied Science Letters, 9(3-2022), 1-11. DOI:10.51847/FbSE88zKEz
Ding, R. X., Goh, W. R., Wu, R. N., Yue, X. Q., Luo, X., Khine, W. W. T. & Lee, Y. K. (2019). Revisit gut microbiota and its impact on human health and disease. Journal of food and drug analysis, 27(3), 623-631.  DOI: 10.1016/j.jfda.2018.12.012
Dong, H. L., Zhang, S. X., Chen, Z. H., Tao, H., Li, X., Qiu, J. F. & Xu, S. Q. (2018). Differences in gut microbiota between silkworms (Bombyx mori) reared on fresh mulberry (Morus alba var. multicaulis) leaves or an artificial diet. RSC advances, 8(46), 26188-26200. doi: 10.1039/c8ra04627a.
Feng, W., Wang, X. Q., Zhou, W., Liu, G. Y. & Wan, Y. J. (2011). Isolation and characterization of lipase-producing bacteria in the intestine of the silkworm, Bombyx mori, reared on different forage. Journal of Insect Science, 11(1), 135.  DOI: 10.1673/031.011.13501
Gandotra, S., Kumar, A., Naga, K., Bhuyan, P. M., Gogoi, D. K., Sharma, K. & Subramanian, S. (2018). Bacterial community structure and diversity in the gut of the muga silkworm, Antheraea assamensis (Lepidoptera: Saturniidae), from India. Insect molecular biology, 27(5), 603-619. DOI:10.1111/imb.12495
Gibson, C. M. & Hunter, M. S. (2010). Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecology letters, 13(2), 223-234.DOI:10.1111/j.1461-0248.2009.01416.x.
Gogoi, P., Boruah, J. L. H., Yadav, A., Debnath, R. & Saikia, R. (2023). Comparative seasonal analysis of Eri silkworm (Samia ricini Donovan) gut composition: implications for lignocellulose degradation. Environmental Science and Pollution Research, 30(50), 109198-109213. doi: 10.1007/s11356-023-29893-9.
Gong, J. & Yang, C. (2012). Advances in the methods for studying gut microbiota and their relevance to the research of dietary fiber functions. Food Research International, 48(2), 916-929. https://doi.org/10.1016/j.foodres.2011.12.027
Govindarajulu, S N., Varier, K M., Jayamurali, D., Liu, W., Juan, C., Manoharan, N., Li, Y. & Gajendran, B. (2020). Insect gut microbiome and its applications. Elsevier BV, 379-395. https://doi.org/10.1016/b978-0-12-821265-3.00016-5
Haloi, K., Kalita, M. K., Nath, R. & Devi, D. (2016). Characterization and pathogenicity assessment of gut-associated microbes of muga silkworm Antheraea assamensis Helfer (Lepidoptera: Saturniidae). Journal of invertebrate pathology, 138, 73-85. doi: 10.1016/j.jip.2016.06.006.
Khyade, V. B. & Marathe, R. J. (2013). Withdrawn: Diversity of bacterial flora in the mid gut of fifth instar larvae of silk worm Bombyx mori (L)(race: PM X CSR2). Journal of Insect Science, 13(1). https://doi.org/10.1673/03 1.013.16301
Kumar, V. I. K. R. A. M., Singh, A. B. H. I. S. H. E. K., Indirakumar, K., Majumdar, M. & Guha, L. O. P. A. M. U. D. R. A. (2022). Effect of different host plants on rearing and grainage activity on muga silkworm (Antheraea assamensis). International Journal of Agriculture Sciences, 14(8), 11559-11562.
LeBlanc, J. G., Laiño, J. E., Del Valle, M. J., Vannini, V. V., van Sinderen, D., Taranto, M. P. & Sesma, F. (2011). B‐Group vitamin production by lactic acid bacteria–current knowledge and potential applications. Journal of applied microbiology, 111(6), 1297-1309. doi: 10.1111/j.1365-2672.2011.05157.x.
Lewis, B. B., Buffie, C. G., Carter, R. A., Leiner, I., Toussaint, N. C., Miller, L. C. & Pamer, E. G. (2015). Loss of microbiota-mediated colonization resistance to Clostridium difficile infection with oral vancomycin compared with metronidazole. The Journal of infectious diseases, 212(10), 1656-1665. doi: 10.1093/infdis/jiv256
Li S, Zhang J, Liu L, Su J, Song Y, Xu Y. (2020). The composition of gut microbiota in two strains of silkworms with different susceptibilities to bacterial diseases. BMC Microbiol, 20(1):1-12.
Li, C., Xu, S., Xiang, C., Xu, S., Zhou, Q. & Zhang, J. (2022). The gut microbiota of silkworm are altered by antibiotic exposure. FEBS Open bio, 12(12), 2203-2212. doi: 10.1002/2211-5463.13502.
Li, G., Xiao, Y., Leng, J., Lou, Q. & Zhao, T. (2024). Beneficial efficacy and mode of action of probiotic Bacillus subtilis SWL− 19 on the silkworm (Bombyx mori L.). Symbiosis, 1-11.
Liang, X., He, J., Zhang, N., Muhammad, A., Lu, X. & Shao, Y. (2022). Probiotic potentials of the silkworm gut symbiont Enterococcus casseliflavus ECB140, a promising L-tryptophan producer living inside the host. Journal of Applied Microbiology, 133(3), 1620-1635. DOI: 10.1111/jam.15675
Liang, X., Sun, C., Chen, B., Du, K., Yu, T., Luang-In, V. & Shao, Y. (2018). Insect symbionts as valuable grist for the biotechnological mill: an alkaliphilic silkworm gut bacterium for efficient lactic acid production. Applied Microbiology and Biotechnology, 102, 4951-4962. doi: 10.1007/s00253-018-8953-1.
Liu, R., Wang, W., Liu, X., Lu, Y., Xiang, T., Zhou, W. & Wan, Y. (2018). Characterization of a lipase from the silkworm intestinal bacterium Bacillus pumilus with antiviral activity against Bombyx mori (Lepidoptera: Bombycidae) nucleopolyhedrovirus in vitro. Journal of Insect Science, 18(6), 3. doi: 10.1093/jisesa/iey111.
Lugli, G. A., Mancabelli, L., Milani, C., Fontana, F., Tarracchini, C., Alessandri, G. & Ventura, M. (2023). Comprehensive insights from composition to functional microbe-based biodiversity of the infant human gut microbiota. npj Biofilms and Microbiomes, 9(1), 25. doi: 10.1038/s41522-023-00392-6.
Menetrey, Q., Sorlin, P., Jumas-Bilak, E., Chiron, R., Dupont, C. & Marchandin, H. (2021). Achromobacter xylosoxidans and Stenotrophomonas maltophilia: emerging pathogens well-armed for life in the cystic fibrosis patients’ lung. Genes, 12(5), 610. doi: 10.3390/genes12050610.
Meng, L., Li, H., Bao, M. & Sun, P. (2017). Metabolic pathway for a new strain Pseudomonas synxantha LSH-7′: from chemotaxis to uptake of n-hexadecane. Scientific reports, 7(1), 39068.  doi: 10.1038/srep39068.
Miyashita, A., Takahashi, S., Ishii, K., Sekimizu, K. & Kaito, C. (2015). Primed immune responses triggered by ingested bacteria lead to systemic infection tolerance in silkworms. PLoS One, 10(6), e0130486. doi: 10.1371/journal.pone.0130486.
Mohanraj, P. & Subramanian, S. (2014). Antibacterial activity of gut flora isolates from mulberry silkworm Bombyx mori. International Journal of Environmental Science, 1, 267-270.
MsangoSoko, K., Bhattacharya, R., Ramakrishnan, B., Sharma, K. & Subramanian, S. (2021). Cellulolytic activity of gut bacteria isolated from the eri silkworm larvae, Samia ricini,(Lepidoptera: Saturniidae). International Journal of Tropical Insect Science, 41, 2785-2794. https://doi.org/10.1007/s42690-021-00459-x
MsangoSoko, K., Chandel, R., Gandotra, S., Yadav, K., Gambhir, S. & Subramanian, K. S. S. (2020). Diversity of microbial groups associated with the gut of the eri silkworm, Samia ricini, (Lepidoptera: Saturniidae) and white grub, Anomala dimidiata,(Coleoptera: Scarabaeidae) larvae as revealed by phospholipid fatty acids. J. Entomol. Zool. Stud, 8(2), 1679-1683.
MsangoSoko, K., Gandotra, S., Bhattacharya, R., Ramakrishnan, B., Sharma, K. & Subramanian, S. (2022). Screening and characterization of lipase producing bacteria isolated from the gut of a lepidopteran larvae, Samia ricini. Journal of Asia-Pacific Entomology, 25(1), 101856. https://doi.org/10.1016/j.aspen.2021.101856
Mwchahary, H. & Brahma, D. (2023) Microbial partnerships in sericulture: A review on the gut bacteria of silkworms. https://www.researchgate.net/publication/37 1968664_
Ozbayram, E. G., Kleinsteuber, S. & Nikolausz, M. (2020). Biotechnological utilization of animal gut microbiota for valoriz of lignocellulosic biomass. Applied Microbiology and Biotechnology, 104(2), 489-508. doi: 10.1007/s00253-019-10239-w.
Pachiappan, P. & Alagesan, S. G. T. (2021). Impact of probiotics on enzymatic activity and economic traits of double hybrid silkworm, Bombyx mori L. Pharm. Innov, 10, 1022-1026.
Pal, S. (2020). YEAST IN SOUTHWEST MONSOON RAINWATER., 3(3), 4-8. https://doi.org/10.36547/ft.2020.3.3.4-8 DOI:10.36547/ft.2020.3.3.4-8
Pandiarajan, J. & Revathy, K. (2020). Cellulolytic potential of gut bacterial biomass in silkworm Bombyx mori. L. Ecological Genetics and Genomics, 14, 100045. https://doi.org/10.1016/j.egg.2019.100045
Paoli, L., Ruscheweyh, H. J., Forneris, C. C., Hubrich, F., Kautsar, S., Bhushan, A. & Sunagawa, S. (2022). Biosynthetic potential of the global ocean microbiome. Nature, 607(7917), 111-118. doi: 10.1038/s41586-022-04862-3.
Pérez-Cobas, A. E., Moya, A., Gosalbes, M. J. & Latorre, A. (2015). Colonization resistance of the gut microbiota against Clostridium difficile. Antibiotics, 4(3), 337-357. doi: 10.3390/antibiotics4030337.
Pimenta, R. S., Alves, P. D., Correˆa Jr, A., Lachance, M. A., Prasad, G. S., Rajaram, & Rosa, C. A. (2005). Geotrichum silvicola sp. nov., a novel asexual arthroconidial yeast species related to the genus Galactomyces. International journal of systematic and evolutionary microbiology, 55(1), 497-501. doi: 10.1099/ijs.0.63187-0.
Pishchik, V. N., Filippova, P. S., Mirskaya, G. V., Khomyakov, Y. V., Vertebny, V. E., Dubovitskaya, V. I. & Chebotar, V. K. (2021). Epiphytic PGPB Bacillus megaterium AFI1 and Paenibacillus nicotianae AFI2 improve wheat growth and antioxidant status under Ni stress. Plants, 10(11), 2334. doi: 10.3390/plants10112334.
Prasanna, V. A., Kayalvizhi, N., Rameshkumar, N., Suganya, T. & Krishnan, M. (2014). Characterization of amylase producing Bacillus megaterium from the gut microbiota of Silkworm Bombyx mori. Res J Chem Environ, 18(7), 38-45.
Prashanthi Gudimalla, D. S. A. & Kuntamalla, S. (2020).Isolation, identification, and characterisation of pathogenic bacteria from the gut tissue of silkworm (bombyx mori, l) and its management using Phyto essential oils. Internation Journal of Entomology Research, 5 (2), 67069
Prem Anand, A. A., Vennison, S. J., Sankar, S. G., Gilwax Prabhu, D. I., Vasan, P. T., Raghuraman, T. & Vendan, S. E. (2010). Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. Journal of Insect Science, 10(1), 107. doi: 10.1673/031.010.10701.
Priyadharshini, P., Swathiga, G., Maria Joncy, A. & Thangamalar, A. (2021). Probiotics and its role in silkworm growth and development, JUST Agriculture. 2(2). www. just agriculture.in
Rajan, R., Chanda, S. D., Rani, A., Gattu, R., Vodithala, S. & Mamillapalli, A. (2020). Bacterial gut symbionts of Antheraea mylitta (Lepidoptera: Saturniidae). Journal of Entomological Science, 55(1), 137-140. https://doi.org/10.18474/0749-8004-55.1.137
Ramesh, G. K., Thangamalar, A., Muthuswami, M. & Subramanian, S. (2010). Characterisation of gram-negative bacterial isolates from guts of few multivoltine silkworm breeds. Karnataka Journal of Agricultural Sciences, 22(3).
Richardson, J. B., Dancy, B. C., Horton, C. L., Lee, Y. S., Madejczyk, M. S., Xu, Z. Z. & Lewis, J. A. (2018). Exposure to toxic metals triggers unique responses from the rat gut microbiota. Scientific Reports, 8(1), 6578. doi: 10.1038/s41598-018-24931-w.
Scardaci, R., Varese, F., Manfredi, M., Marengo, E., Mazzoli, R. & Pessione, E. (2021). Enterococcus faecium NCIMB10415 responds to norepinephrine by altering protein profiles and phenotypic characters. Elsevier BV, 231, 104003-104003. https://doi.org/10.1016/j.jprot.2020.104003
Serrato-Salas, J. & Gendrin, M. (2023). Involvement of Microbiota in Insect Physiology: Focus on B Vitamins. American Society for Microbiology, 14(1). https://doi.org/10.1128/mbio.02225-22
Singh, G. P., Baig, M. M. & Bajpayi, C. M. (2021). Recent trends in tasar silkworm Antheraea mylitta Drury disease management. In Methods in Microbiology (Vol. 49, pp. 175-200). Academic Press. DOI:10.1016/bs.mim.2021.05.001
Ssemugenze, B., Esimu, J., Nagasha, J. & Wandui Masiga, C. (2021). Sericulture: Agro-based industry for sustainable socio-economic development: A review. DOI:10.29322/IJSRP.11.09.2021.p11756
Subramanian, S., Mohanraj, P. & Muthuswamy, M. (2010). Newparadigm in silkworm disease management using probiotic application of Streptomyces noursei. Karnataka Journal of Agricultural Sciences, 22(3).
Sun, Z., Lu, Y., Zhang, H., Kumar, D., Liu, B., Gong, Y. & Gong, C. (2016). Effects of BmCPV infection on silkworm Bombyx mori intestinal bacteria. PLoS One, 11(1), e0146313.  doi: 10.1371/journal.pone.0146313.
Suraporn, S., Sangsuk, W., Chanhan, P. & Promma, S. (2015). Effects of probiotic bacteria on the growth parameters of the Thai silkworm, Bombyx mori.
Tan, I Y D. & Bautista, M A M. (2022). Bacterial Survey in the Guts of Domestic Silkworms, Bombyx mori L. Multidisciplinary Digital Publishing Institute, 13(1), 100-100. https://doi.org/10.3390/insects13010100
Thangamalar, A., Ramesh, G. K., Subramanian, S. & Mahalingam, C. A. (2009). Use of biochemical kits for characterization of Enterobacteriaceae from the gut of silkworm, Bombyx mori L.
Unban, K., Klongklaew, A., Kodchasee, P., Pamueangmun, P., Shetty, K. & Khanongnuch, C. (2022). Enterococci as dominant xylose utilizing lactic acid bacteria in Eri silkworm midgut and the potential use of enterococcus hirae as probiotic for Eri culture. Multidisciplinary Digital Publishing Institute, 13(2), 136-136. https://doi.org/10.3390/insects13020136
Vermelho, A. B., Noronha Filho, E. F., EDXF, F. M., Bon, E. P. S., Rosenberg, D. E., Lory, S. & Thompson, F. (2013). Prokaryotic enzymes: diversity and biotechnological applications. The Prokaryotes-applied Bacteriology and Biotechnology, 2123-240.
Xia, Q., Zhou, Z., Lu, C., Cheng, D., Dai, F. & Yang, H. (2004). A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 306(5703), 1937-1940. doi: 10.1126/science.1102210.
Yeruva, T., Vankadara, S., Ramasamy, S. & Lingaiah, K. (2020). Identification of potential probiotics in the midgut of mulberry silkworm, Bombyx mori through metagenomic approach. Probiotics and Antimicrobial Proteins, 12, 635-640. DOI:10.1007/s12602-019-09580-3
Yuan, S., Sun, Y., Chang, W., Zhang, J., Sang, J., Zhao, J. & Lou, H. (2023). The silkworm (Bombyx mori) gut microbiota is involved in metabolic detoxification
by glucosylation of plant toxins. Communications Biology, 6(1), 790. https://doi.org/10.1038/s42003-023-05
150-0
Zhang, X., Feng, H., He, J., Liang, X., Zhang, N., Shao, Y. & Lu, X. (2022). The gut commensal bacterium Enterococcus faecalis LX10 contributes to defending against Nosema bombycis infection in Bombyx mori. Pest Management Science, 78(6), 2215-2227. doi: 10.1002/ps.6846
Zhang, X., Zhang, F. & Lu, X. (2022). Diversity and functional roles of the gut microbiota in lepidopteran insects. Multidisciplinary Digital Publishing Institute, 10(6), 1234-1234. https://doi.org/10.3390/microorganisms10061234
Zhao, M., Lin, X. & Guo, X. (2022). The role of insect symbiotic bacteria in metabolizing phytochemicals and agrochemicals. Multidisciplinary Digital Publishing Institute, 13(7), 583-583. https://doi.org/10.3390/insects13070583
Zhou, Q., Fu, P., Li, S., Zhang, C., Yu, Q., Qiu, C., Zhang, H. & Zhang, Z. (2020,). A comparison of co-expression networks in silk gland reveals the causes of silk yield increase during silkworm domestication. Frontiers Media, 11. https://doi.org/10.3389/fgene.202 0.0022 5
Zhu, M., Liu, X., Ye, Y., Yan, X., Cheng, Y., Zhao, N., Chen, F. & Ling, Z. (2022). Gut Microbiota: A novel therapeutic target for Parkinson’s disease. Frontiers Media, 13. https://doi.org/10.3389/fimmu.2022.937555
Section
Research Articles

How to Cite

Potential of probiotic bacteria to improve silk production: Boosting the Sericulture Industry in Northeast India. (2024). Journal of Applied and Natural Science, 16(4), 1431-1443. https://doi.org/10.31018/jans.v16i4.5873