Article Main

Himani Punia Jayanti Tokas Kalpna Thakur Indra Rautela Sonika kalia

Abstract

Sorghum (Sorghum bicolor L.) is mainly produced as an infallible crop in semi-arid and arid areas. Though the impact of salinity on crop production is extensively documented, very limited studies are available demonstrating the interaction between fodder quality and irradiance use efficiency in sorghum. To study such interactions, the present study aimed to evaluate the resource use efficiency in different sorghum lines for fodder evaluation under a varied salinity regime (60 to 120 mM NaCl), on the 2017-18, 2018-19 and 2019-20 kharif seasons. Sorghum grown on June 15, 2018employed higher thermal and heat units than July 2, 2019. Sorghum genotypes' differential quality and yield responses to various temperatures were due to differences in high salinity tolerance during various growth stages. The crop sown on June 15th required the most growing degree days units to reach various phenological stages and physiological maturity. SSG 59-3 maintained higher crude protein, in vitro dry matter digestibility (IVDMD), crude protein yield, and digestible dry matter at 120 mM NaCl. SSG 593 exhibited maximum green fodder yield (GFY) and dry matter yield (DMY), while PC-5 had the minimum. SSG 59-3 genotype accumulated high radiation use efficiency (281.23 kgha-1 MJ1), heat susceptibility index (0.42%), and yield stability ratio (87.2%) in both control and stressed environments, while PC-5 showed moderate tolerance to temperature stress and thus recorded a lower heat susceptibility index. Since there is no discernible correlation between the agronomic and fodder quality factors, it is possible to breed for desired qualities using independent associations. The results showed that the SSG 59-3 genotype adopted optimum allocation of resources for biomass production, maximized yield potential, and could be utilized in breeding programs as a potential fodder crop in saline regimes.


 

Article Details

Article Details

Keywords

Crude protein, Efficiency, Radiation, Salinity, Sorghum, Sowing dates, Yield

References
Abusuwar, A.O. & El, Zilal. H.A. (2010). Effect of chicken manure on yield, quality, and HCN concentration of two forage Sorghum (Sorghum bicolor (L) Moench) cultivars. Agric Biol JN Am.1, 27–31.
Afshar, R.K., Chaichi, M.R., Assareh, M.H., Hashemi, M. &Liaghat, A. (2014). Interactive effect of deficit irrigation and soil organic amendments on seed yield and flavonolignan production of milk thistle (Silybum marianum L. Gaertn.). Ind Crops Prod. 58, 166–172.
Amini, F., Ehsanpour, A.A., Hoang, Q.T., & Shin, J.S. (2007). Protein pattern changes in tomato under in vitro salt stress. Russian Journal of Plant Physiology. 54, 464–471.
Attia, M.S., Osman, M.S., Mohamed, A.S., Mahgoub, H.A., Garada, M.O., &Abdelmouty, E.S. et al. (2021). Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns, and physio-biochemical characteristics of tomato grown under salinity stress. Plants.10, 388.
Awika, J.M., Yang, L., Browning, J.D., & Faraj, A. (2009). Comparative antioxidant, antiproliferative, and phase II enzyme inducing potential of sorghum (Sorghum bicolor) varieties. LWT-Food Science and Technology. 42,1041–1046.
Azeem, M., Pirjan, K., Qasim, M., Mahmood, A., Javed, T. & Muhammad, H., et al. (2023). Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Sci Rep., 13, 2895.
Azizinya, S., Ghanadha, M.R., Zali, A.A., Samadi, B.Y., & Ahmadi, A. (2005). An evaluation of quantitative traits related to drought resistance in synthetic wheat genotypes in stress and non-stress conditions. Iranian Journal of Agricultural Sciences. 36, 281–293.
Barnes, R.F., Muller, L.D., Bauman, L.F., &Colenbrander, V.F. (1971). In vitro dry matter disappearance of brown midrib mutants of maize (Zea mays L.). J Anim Sci. 33: 881–884.
Bourgeois, G., Jenni, S., Laurence, H., & Tremblay, N. (2000). Improving the prediction of processing pea maturity based on the growing-degree day approach. HortScience. 35, 611–614.
Burns, R.E. (1971). Method for estimation of tannin in grain sorghum 1. Agron J. 63, 511–512.
Chavez, J.C., Ganjegunte, G.K., Jeong, J., Rajan, N., Zapata, S.D., & Ruiz-Alvarez, O., et al. (2022). Radiation use efficiency and agronomic performance of biomass sorghum under different sowing dates. Agronomy. 12, 1252.
Dehnavi, R.A., Zahedi, M. & Piernik, A. (2024) Understanding salinity stress responses in sorghum: exploring genotype variability and salt tolerance mechanisms. Front. Plant Sci. 14,1296286. doi: 10.3389/fpls.2023.1296286
Franzoni, G., Cocetta, G., Trivellini, A., & Ferrante, A. (2020). Transcriptional Regulation in Rocket Leaves as Affected by Salinity. Plants, 9, 20.
Gilchrist, D.G., Lueschen, W.E., & Hittle, C.N. (1967). Revised Method for the Preparation of Standards in the Sodium Picrate Assay of HCN 1. Crop Sci. 7, 267–268.
Gong, Z., Xiong, L., Shi H., Yang S., Herrera-Estrella L.R., & Xu G., et al. (2020). Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci. 63, 635–674.
Hossain, S.M., Islam, N.M., Rahman, M.M., Mostafa, M. G. & Khan, R.A.M. (2022) Sorghum: A prospective crop for climatic vulnerability, food and nutritional security. Journal of Agriculture and Food Research. 8, 100300.
Malik, A., Punia, H., Singh, N., & Singh, P. (2022). Bionanomaterial-mediated seed priming for sustainable agricultural production. Bionanotechnology: Emerging Applications of Bionanomaterials, Elsevier, pp. 77–99.
Marsalis, M.A., Angadi, S.V., & Contreras, Govea F.E. (2010). Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crops Res. 11,: 52–57.
Mohapatra, S., Tripathy, S.K., Mohanty, A.K., & Tripathy, S. (2021). Effect of heat stress on yield and economics of rice (Oryza sativa L.) cultivars under different sowing dates.J. Agrometeorol. 23: 38–45.
Pathak, T.B., & Stoddard, C.S. (2018). Climate change effects on the processing tomato growing season in California using growing degree day model. Model Earth Syst Environ. 4, 765–775.
Punia, H., Tokas, J., Bhadu, S., Mohanty, A.K., Rawat, P., Malik, A., et al. (2020). Proteome dynamics and transcriptome profiling in sorghum [Sorghum bicolor (L.) Moench] under salt stress. 3 Biotech.;10: 412. doi:10.1007/s13205-020-02392-1
Punia, H., Tokas, J., Malik, A., & Yashveer, S. (2022). Reconnoitering Bionanomaterials for Mitigation of Abiotic Stress in Plants. In Bionanotechnology: Emerging Applications of Bionanomaterials; Elsevier: Amsterdam, The Netherlands, pp. 101–126.
Punia, H., Tokas, J., Malik, A., Bajguz, A., El-Sheikh, MA., & Ahmad, P. (2021b). Ascorbate–Glutathione Oxidant Scavengers, Metabolome Analysis and Adaptation Mechanisms of Ion Exclusion in Sorghum under Salt Stress. Int J Mol Sci. 22, 13249.
Punia, H., Tokas, J., Malik, A., Kharor, N. & Yashveer, S. (2021a). Deciphering Biochemical Responses, Metabolome Analysis, and Key Genes Controlling Sorghum [Sorghum bicolor (L.) Moench] Ion Transport in Responses to Salt Stress. Available online: https://www. researchsquare.com/article/rs-576430/v1 (accessed on 18 October 2023).
Punia, H., Tokas, J., Malik, A., Rani, A., Gupta, P., Kumari, A., Mor, V.S., Bhuker, A., & Kumar, S. (2020). Solar Radiation and Nitrogen Use Efficiency for Sustainable Agriculture. In Resources Use Efficiency in Agriculture; Springer: Berlin/Heidelberg, Germany, pp. 177–212.
Punia, H., Tokas, J., Malik, A., Rani, A., Gupta, P., Kumari, A., Mor, V.S., Bhuker, A., & Kumar, S., (2020). Solar Radiation and Nitrogen Use Efficiency for Sustainable Agriculture. In: Kumar, S., Meena, R.S., Jhariya, M.K. (eds) Resources Use Efficiency in Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-6953-1_6
Punia, H., Tokas, J., Malik, A., Sangwan, S., Rani, A., & Yashveer, S., et al. (2021d). Genome-Wide Transcriptome Profiling, Characterization, and Functional Identification of NAC Transcription Factors in Sorghum under Salt Stress. Antioxidants. 10, 1605.
Punia, H., Tokas, J., Malik, A., Singh, S., Phogat, D.S., &Bhuker, A. et al. (2021c). Discerning morpho-physiological and quality traits contributing to salinity tolerance acquisition in sorghum [Sorghum bicolor (L.) Moench]. South African Journal of Botany. 140, 409–418.
Punia, H., Tokas, J., Malik, A., Singh, S., Phogat, D.S., Bhuker, A. et al. (2021). Discerning morpho-physiological and quality traits contributing to salinity tolerance acquisition in sorghum [Sorghum bicolor (L.) Moench]. South African Journal of Botany. 140, 409–418.
Punia, H., Tokas, J., Mor, V.S., Bhuker, A., Malik, A., Singh, N., et al. (2021). Deciphering reserve mobilization, antioxidant potential, and expression analysis of starch synthesis in sorghum seedlings under salt stress. Plants.10, 2463.
Rana, D.S., Singh, B., Gupta, K., Dhaka, A.K., & Pahuja, S.K. (2013). Effect of fertility levels on growth, yield and quality of multicut forage sorghum [Sorghum bicolor (L.) Moench] genotypes. Forage Research. 39, 36–38.
Rao, A.Q., ud, Din. S., Akhtar, S., Sarwar, M.B., Ahmed, M., Rashid, B., et al. (2016). Genomics of salinity tolerance in plants. Plant Genomics InTech. 273–299.
Satpal, J.T., Kumar, A., & Kumar, S.R. (2018). Potential productivity and radiation use efficiency of multi-cut forage sorghum [Sorghum bicolor (L.) Moench] genotypes. Journal of Agrometeorology. 20, 364–367.
Somegowda, V.K., Vemula, A., Naravula, J., Prasad, G., Rayaprolu, L., & Rathore, A., (2021). Evaluation of fodder yield and fodder quality in sorghum and its interaction with grain yield under different water availability regimes. Curr Plant Biol. 25:,100191.
Tei, F., Benincasa, P., Guiducci, M. (2002). Critical nitrogen concentration in lettuce. XXVI International Horticultural Congress: Toward Ecologically Sound Fertilization Strategies for Field Vegetable Production 627. pp. 187–194.
Tesfay, S.Z., Bertling, I., Odindo, A.O., Greenfield, P.L., and Workneh, T.S. (2011). Growth responses of tropical onion cultivars to photoperiod and temperature based on growing degree days. Afr. J. Biotechnol. 10, 15875-15882.
Tesfay, S.Z., Modi, A.T., & Mohammed, F. (2006). The effect of temperature in moringa seed phytochemical compounds and carbohydrate mobilization. South African Journal of Botany. 102, 190–196.
Tokas, J., Kumari, P., & Thakral, N.K. (2017). Evaluation of forage sorghum [Sorghum bicolor (L.) Moench] genotypes for quality and yield. Forage Research. 43, 235–238.
Tokas, J., Punia, H., Malik, A., Sangwan, S., Devi, S.& Malik, S. (2021). Growth performance, nutritional status, forage yield and photosynthetic use efficiency of sorghum [Sorghum bicolor (L.) Moench] under salt stress. Range Management and Agroforestry. 42, 59–70.
Yang, Z., Li, J.L., Liu, L.N., Xie, Q., & Sui, N. (2020). Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Front Plant Sci. 10, 1722.
Zeeshan, M., Lu, M., Sehar, S., Holford, P., & Wu, F. (2020). Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy. 10, 127.
Section
Research Articles

How to Cite

Assessment of Sorghum bicolor fodder attributes for agroclimatic potential under salt stress. (2024). Journal of Applied and Natural Science, 16(4), 1709-1718. https://doi.org/10.31018/jans.v16i4.5871