Article Main

Kshetrimayum Ishwarani Devi Sujata Upadhyay Karma Diki Bhutia Laxuman Sharma Obadiya Rai

Abstract

The wild olive (Elaeocarpus floribundus Blume) is an underutilized fruit species that belongs to the Elaeocarpaceae family and is locally known as Chorphon in Manipur. The present study aimed to study  morphological observations on fruit weight, fruit length, fruit width, stone weight, stone length, stone diameter, pulp weight, pulp weight: stone weight ratio and biochemical parameters i.e. total soluble solids (TSS), total sugar %, total carbohydrate, protein, ascorbic acid, total phenol, total flavonoid and oil for wild olive (E.floribundus Blume). Accordingly, the fruit samples were collected from 14 locations/places (S1 to S14)  of Manipur varying in altitude from 292-1459m i.e. Minou, Longmai-3, Lilong, Yarou Bamdiar, Kakching, Khongman, Patsoi, Thoubal Ningombam, Komlathabi, Yaripok, Molnoi, Tokpaching, Tengnoupal and Chingai. The study showed that sample S4 (Yarou Bamdiar), having an altitude of 777m was found to be the best among all samples studied with the highest pulp weight: stone weight ratio (6.79), second highest fruit width (32.26mm) and stone length (28.57 mm), least stone weight of 2.06 g among morphological observations and highest protein (0.65%), total carbohydrate, (2.38 mg/100g), ascorbic acid (5.51 mg/100g),  total phenol (55.21 mg/100g)  and oil content (14.26%) among biochemical parameters. There was a negative correlation observed between the altitude of locations of sample collection and the majority of morphological observations (-0.132 to -0.543), whereas a positive correlation was observed between altitude and the majority of biochemical parameters (0.042 to 0.293). This study emphasizes that wild olive morphotypes found in Manipur, India, are comparable in their morphological and biochemical parameters to commercial olive cultivars, and their production technology should be strengthened.


 

Article Details

Article Details

Keywords

Altitude, Biochemical parameter, Morphological observations, Oil content, Wild olive

References
Ahmadipour, S, Arji, I., Ebadi, A., & Abdossi, V. (2018). Physiological and biochemical responses of some olive cultivars (Olea europaea L.) to water stress. Cellular and Molecular Biology, 64(15), 20-29. http://dx.doi.org/10.14715/cmb/2017.64.15.4
AOAC (1984) Official methods of analysis (14th ed.). Washington, DC: Association of Official Analytical chemists.
Bhowmick, N. (2017). Fruiting characteristics of jalpai-the Indian olive (Elaeocarpus floribundus Blume.). Journal of Pharmacognosy and Phytochemistry, 6(5), 608-609.
Blanch, G. P., Gomez-Jimenez, M. C. & Ruiz, D. C. M. L. (2020). Variations in fatty acid composition and antioxidant content in olive fruits as a result of the application of phytoregulator to the olive tree (Olea europaea L.). CyTA-Journal of Food, 18(1), 76-83. doi.org/10.1080/1947633 7.2020.1715486
Bolandnazar, S. Z., Hoseini, S. H., Servili, M. & Ghavami, M. (2014). Evaluation of changes in phenolic compounds of two varieties of olives during the course of maturation. Journal of Food Biosciences and Technology, 4 (1), 69-73.
Chandel, S. R. S. (2012). Regression and Correlation. In: A Handbook of Agricultural Statistics. Achal Prakashan Mandir, Kanpur, U.P. pp. A282-A285.
Deraz, M. S., El-Kholany, A. S., Abdelmegeed, M. M., Abd-Elraheem, M. A. & Elshaer, M. A. (2022). Chemical Evaluation and Biological Activity of Olive Leaves Extract. Al-Azhar Journal of Agricultural Research, 47(1), 35-45. doi.org/10.21608/ajar.2022.266482
Dey, K., Dey, A. N., Ghosh, A. & Dutta, P. (2019). Physico-chemical characterization of Indian olive (Elaeocarpus floribundus) grown in Terai Region of West Bengal. In III International Symposium on Underutilized Plant Species. Acta Horticulturae, 1241, 175-180. doi.org/10.17660/ActaHortic.2019.1241.25
Dey, K., Ghosh, A., Bauri, F. K. & Sahu, P. K. (2022). Studies on fruit developmental stages and maturity of Indian Olive (Elaeocarpus floribundus Bl.). Research Square, 1-25 doi.org/10.21203/rs.3.rs-1856538/v1
FAO (2016). Food and Agriculture Organization of the United Nations. FAOSTAT.
Ghanbari, R., Anwar, F., Alkharfy, K. M., Gilani, A. H. & Saari, N. (2012). Valuable nutrients and functional bioactive in different parts of olive (Olea europaea L.) a review. International Journal of Molecular Sciences, 13(3), 3291-3340. doi.org/10.3390/ijms13033291
Gholami, R., Fahadi, H. N., Zahedi, S. M., Gholami, H., & Carillo, P. (2022). Effect of three water-regimes on morpho-physiological, biochemical and yield responses of local and foreign olive cultivars under field conditions. BMC Plant Biology, 22(1), 477. doi.org/10.1186/s12870-022-03855-8
Ghosh, A., Dey, K., Mani, A., Dey, A., &Bauri, F. (2017) Implication of nanocomposite edible coating for shelf-life extension of Indian olive (Elaeocarpus floribundus Blume). Current J. Applied Sci. & Tech., 22(2), 1-8. doi.org/10.9734/CJAST/2017/33111
Guo, Z., Jia, X., Zheng, Z., Lu, X., Zheng, Y., Zheng, B. & Xiao, J. (2018). Chemical composition and nutritional function of olive (Olea europaea L.): A review. Phytochemistry Reviews, 17, 1091-1110. doi.org/10.1007/s11101-017-9526-0
Gurung, K., & Manivannan, S. (2020). Morphological characterization and secondary metabolites profile of black pepper (Piper nigrum L.) genotypes from Sikkim. Journal of Spices and Aromatic Crops, 29(2), 98-104. doi.org/10.25081/josac.2020.v29.i2.6347
Hossain, M. A., Rana, M. M., Kimura, Y. & Roslan, H. A. (2014). Changes in biochemical characteristics and activities of ripening associated enzymes in mango fruit during the storage at different temperatures. Biomed Research International, 1-11. doi.org/10.1155/2014/232969
Ivancic, T., Jakopic, J., Veberic, R., Vesel, V., & Hudina, M. (2022). Effect of ripening on the phenolic and sugar contents in the meso-and epicarp of olive fruits (Olea europaea L.) cultivar ‘Leccino’. Agriculture, 12(9), 1347. doi.org/10.3390/agriculture12091347
Jain, N., Dunkwal, V., & Singh, M. (2023). Estimation of nutritional, phytochemical and antioxidant activity of olive fruit (Olea europaea L.) grown in Bikaner, Rajasthan. The Pharma Innovation Journal, 12(5), 161-165.
Kapur, A., Haskovic, A., Copra-Janicijevic, A., Klepo, L., Topcagic, A., Tahirovic I & SoficE. (2012). Spectrophotometric analysis of total ascorbic acid content in various fruits and vegetables. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 38(4), 39-42.
Keer, V., Kamtekar, S., & Patil, V. (2014) Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. Journal of Applied Pharmaceutical Science, 4(9), 061-065. doi.org/10.7324/JAPS.2014.40911
Khadivi, A., Mirheidari, F., Moradi, Y., & Paryan, S. (2022). Identification of the promising olive (Olea europaea L.) cultivars based on morphological and pomological characters. Food Science and Nutrition, 10(4), 1299-1311. https://doi.org/10.1002/fsn3.2767
Khomdram, S., Barthakur, S. & Devi, G. S. (2014). Biochemical and molecular analysis of wild endemic fruits of the Manipur region of India. International Journal of Fruit Science, 14(3), 253-266. doi.org/10.1080/15538 362.2013.818483
Kumar, A., Magotra, V., Sharma, M. K., Sundouri, A. S. & Ali, A. (2020). Performance of olive cultivars under mid hill region of Jammu and Kashmir. Indian Journal of Horticulture, 77(4), 728-732. doi.org/10.5958/0974-0112.2020.00105.X
Kumar, A., Sharma, N., Ali, A., Singh, P. K., Nazir, N., & Khalil, A. (2021) Genetic variability and correlation studies in olive (Olea europaea L.) genotypes under mid hills conditions of Jammu and Kashmir, India. Ecology, Environment and Conservation, 27 (November Suppl. Issue), S261-S266.
Lal, S., Singh, D. B., Sharma, O. C., Mir, J. I., Sharma, A. & Padder, B. A. (2016). Olive cultivation (1st ed.) published by Central Institute of Temperate Horticulture, Srinagar, J and K, (India), 1:7.
Lima, .F F., Breda, C. A., Cardoso, C. A. L., Duarte, M. C. T. & Sanjinez-Argando, E. J. (2019). Evaluation of nutritional composition, bioactive compounds, and antimicrobial activity of Elaeocarpus serratus fruit extract. African Journal of Food Science, 13(1), 30-37. doi.org/10.5897/AJFS2018.1760
Lowry, O. H., Rosebrough, N. J., Farr, A. &Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem,193(1), 265-75. PMID: 14907713.
Mousavi, S., Stanzione, V., Mencuccini, M., Baldoni, L., Bufacchi, M. & Mariotti, R. (2019). Biochemical and molecular profiling of unknown olive genotypes from central Italy: determination of major and minor components. European Food Research and Technology, 245(1), 83-94. doi.org/10.1007/s00217-018-3142-0
Ozdemir, Y. & Kurultay, S. (2015). Determination of physicochemical properties of some crossed olives and their convenience to black table olive fermentation by using Lactobacillus plantarum as a starter culture. J Int Sci Publ. Agric Food, 3: 416-424.
Papachatzis, A., Nikolaos, G., Filintas, A. & Ntalla, M.N. (2020) Effect of altitude on total phenolic content and antioxidant activity five olive fruit cultivars grown in Central Greece, Annals of the University of Craiova, 25 (L XI): 141-146.
Raji, R. & Siril, E. A. (2021). Genetic diversity analysis of promising Ceylon olive (Elaeocarpus serratus L.) genotypes using morphological traits and ISSR markers. Current Plant Biology, 26, 100201. https://www.scientific-publications.net/en/article/1000811/
Salmani, A., Seifi, E., Mahdi, A., Ziaiifar, A. M. & Hossein, F. (2016). The growth pattern and oil accumulation in fruit tissues of olive cultivar Kroneiki. Asian Journal of Microbiology, Biotechnology and Environmental Sciences. 18(1), 153-156.
Shekh, H., & Shekh, F. M. (2019). Physical changes During Growth and Development of Khodeiri and Sorani Olive Fruits. Journal of Kirkuk University for Agricultural Sciences, 10(1), 172-180.
Strikic, F., Mavsar, D.B., Perica, S., Cmelik, Z., Satovic, Z. & Javornik, B. (2009) The main Croatian Olive cultivar ‘Oblica’ shows high morphological but low molecular diversity. Journal of Horticultural Science and Biotechnology, 84(3), 345-349.
Tekaya, M., Amel, M. B., Mechri, B., Ayadi, M., Aouina, M. B. S., Mkada, J. , Mezghani, M. A. (2022). Biochemical characterization of olive oil samples obtained from fruit mixtures and from oil blends of four cultivars grown in Central Tunisia. OCL, 29, 5. doi.org/10.1051/ocl/2021050
Touati, S., Acila, S., Boujnah, D., Chehab, H., Ayadi, M. , & Debouba, M. (2022). Geographical location and cultivar‐linked changes on chemical properties of olive oils from Algeria. Food Science and Nutrition, 10(6), 1937-1949. https://doi.org/10.1002/fsn3.2810
Uylaser, V. (2015). Changes in phenolic compounds during ripening in Gemlik variety olive fruits obtained from different locations. CyTA-Journal of Food, 13(2): 167-173. https://doi.org/10.1080/19476337.2014.931331
Verma, N., Shaheen, R., Yadav, S. K. & Singh, A. K. (2012). Olive (Olea europaea L.) Introduction in India: Issues and Prospects. Intern. J. Plant. Res., 25, 44-49. http://www.indianjournals.com/ijor.aspx?target=ijor:veto s&volume=25&issue=2&article=006
Section
Research Articles

How to Cite

A study on morphological observations and biochemical parameters of wild olive (Elaeocarpus floribundus Blume) grown in Manipur. (2025). Journal of Applied and Natural Science, 17(3), 973-980. https://doi.org/10.31018/jans.v17i3.5868