Integration of ICESat/GLAS data and random forest to estimate canopy height and biomass in Central Indian Forest
Article Main
Abstract
Satellite lidar systems, such as ICESat, GEDI, and ICESat-2, have revolutionized global above-ground biomass (AGB) estimation by providing precise forest height data. These missions highlight the transformative potential of spaceborne lidar in advancing biomass assessment and forest monitoring. The present research effectively utilized spaceborne ICESat -1 LiDAR to measure forest canopy height and estimate above-ground biomass (AGB) in Madhya Pradesh's Central Indian Forest. Data from LiDAR, radar, optical, and digital elevation models were integrated with ancillary climate variables and field-based forest inventory during 2009-10. Further, this approach was validated against new data obtained from ICESAT-2 (October 2018 onwards), GEDI (March 2019 onwards), and other spaceborne LiDAR sensors by numerous researchers globally. Lorey's height method established a relationship between GLAS-derived AGB and other variables, creating a spatial–height map using a K-Nearest Neighbour-based random forest approach. Estimated forest canopy height ranged from 2.16 m to 17.63 m with an RMSE of ± 2.57 m. Spatial AGB was estimated for prominent forest types, with R2 values ranging from 0.62 to 0.71 (p < 0.01). The total AGB over Madhya Pradesh's forests were estimated at 315.77 Mt with an RMSE of ±19.22 t ha^-1. Relative errors ranged from 33% to 45% over different forest types, suggesting newer missions like ICESat/GLAS-2 are needed for more precise estimates in future research.
Article Details
Article Details
Above Ground Biomass, ICESat/GLAS, k- Nearest Neighbour, Madhya Pradesh, Random Forest, Tree height
Ahern, F., Janetos, A. C., & Langham, E. (1998). Global Observation of Forest Cover: One Component of CEOS’ Integrated Global Observing Strategy. https://doi.org/10.4095/219613
Alekhya, V. V. L. P., Reddy. R. S., Jha, C. S., Rajashekar, G. & Prasada Rao, P. V. V. (2015). Estimation of vertical forest structure and above-ground biomass using ICESat/GLAS data. International Journal of Geomatics and Geosciences, Vol. 6(2), 1530-1538.
Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., . . . Houghton, R. A. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change, 2(3), 182–185. https://doi.org/10.1038/nclimate1354
Baccini, A., Laporte, N., Goetz, S. J., Sun, M., & Dong, H. (2008). A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environmental Research Letters, 3(4), 045011. https://doi.org/10.1088/1748-9326/3/4/045011
Ballhorn, U., Jubanski, J., & Siegert, F. (2011). ICESat/GLAS Data as a Measurement tool for peatland topography and peat swamp forest biomass in Kalimantan, Indonesia. Remote Sensing, 3(9), 1957–1982. https://doi.org/10.3390/rs3091957
Boudreau, J., Nelson, R., Margolis, H., Beaudoin, A., Guindon, L., & Kimes, D. (2008). Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. Remote Sensing of Environment, 112(10), 3876–3890. https://doi.org/10.1016/j.rse.2008.06.003
Breiman, L. (2001). Random Forests. Machine Learning, Vol. 45, 5–32. https://doi.org/10.1023/A:1010933404324
Brown, S. (1997). Estimating biomass and biomass change of Tropical forests – A primer. Forestry Paper – 134, FAO, Rome.
Chaturvedi, R., Raghubanshi, A., & Singh, J. (2011). Carbon density and accumulation in woody species of tropical dry forest in India. Forest Ecology and Management, 262(8), 1576–1588. https://doi.org/10.1016/j.foreco.2011.07.006
Chen, A., Wang, X., Zhang, M., Guo, J., Xing, X., Yang, D., . . . Yang, X. (2023). Fusion of LiDAR and Multispectral Data for Aboveground Biomass Estimation in Mountain Grassland. Remote Sensing, 15(2), 405. https://doi.org/10.3390/rs15020405
Chen, Z., Sun, Z., Zhang, H., Zhang, H., & Qiu, H. (2023). Aboveground Forest Biomass Estimation Using Tent Mapping Atom Search Optimized Backpropagation Neural Network with Landsat 8 and Sentinel-1A Data. Remote Sensing, 15(24), 5653. https://doi.org/10.3390/rs15245653
Crookston, N. L., & Finley, A. O. (2008). yaImpute: An R Package for kNN Imputation. Journal of Statistical Software, 23(10). https://doi.org/10.18637/jss.v023.i10
Dadhwal, V. K., Kushwaha, S. P. S., Singh, S., Patel, N. R., Nayak, R. K., Patil, P., . . . Ali, M. M. (2012). Recent results from EO studies on Indian carbon cycle assessment. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-8/W20, 3–9. https://doi.org/10.5194/isprsarchives-xxxviii-8-w20-3-2011
Fararoda, R., Reddy, R. S., Rajashekar, G., Chand, T. K., Jha, C. & Dadhwal, V. (2021). Improving forest above-ground biomass estimates over Indian forests using multi-source data sets with machine learning algorithm. Ecological Informatics, 65, 101392. https://doi.org/10.1016/j.ecoinf.2021.101392
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
ISFR. (2021). India State Forest Report – 2021. Forest Survey of India, Ministry of Environment and Forests, Dehradun, India.
Goparaju, L., Madugundu, R., Ahmad, F., Sinha, D. & Singh, J. S. (2021). Temporal dynamics of above-ground biomass of Kaimoor Wildlife Sanctuary, Uttar Pradesh, India: conjunctive use of field and Landsat data. Proceedings of the Indian National Science Academy, 87(3), 499–513. https://doi.org/10.1007/s43538-021-00046-1
Harding, D., Lefsky, M., Parker, G., & Blair, J. (2001). Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests. Remote Sensing of Environment, 76(3), 283–297. https://doi.org/10.1016/s0034-4257(00)00210-8
Huang, X., Cheng, F., Wang, J., Duan, P., & Wang, J. (2023). Forest Canopy Height Extraction Method Based on ICESat-2/ATLAS Data. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–14. https://doi.org/10.1109/tgrs.2023.3240848
Lee, S., Ni-Meister, W., Yang, W., & Chen, Q. (2011). Physically based vertical vegetation structure retrieval from ICESat data: Validation using LVIS in White Mountain National Forest, New Hampshire, USA. Remote Sensing of Environment, 115(11), 2776–2785. https://doi.org/10.1016/j.rse.2010.08.026
Lefsky, M. A. (2009). Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System. Journal of Applied Remote Sensing, 3(1), 033505. https://doi.org/10.1117/1.3082116
Lefsky, M. A. (2010). A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophysical Research Letters, 37(15). https://doi.org/10.1029/2010gl043622
Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C. C., Del Bom Espirito‐Santo, F., . . . de Oliveira, R. (2005). Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters, 32(22). https://doi.org/10.1029/2005gl023971
Lefsky, M. A., Harding, D., Cohen, W., Parker, G., & Shugart, H. (1999). Surface Lidar Remote Sensing of Basal Area and Biomass in Deciduous Forests of Eastern Maryland, USA. Remote Sensing of Environment, 67(1), 83–98. https://doi.org/10.1016/s0034-4257(98)00071-6
Lefsky, M. A., Hudak, A. T., Cohen, W. B., & Acker, S. (2005). Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest. Remote Sensing of Environment, 95(4), 532–548. https://doi.org/10.1016/j.rse.2005.01.010
Lefsky, M. A., Keller, M., Pang, deCamargo, & Hunter. (2007). Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms. Journal of Applied Remote Sensing, 1(1), 013537. https://doi.org/10.1117/1.2795724
Liaw, A., Wiener, M. (2002). Classification and regression by random forest. The R Journal, R News 2, 18-22. Retrieved from https://journal.r-project.org/articles/RN-2002-022/
Li, Z. Bi, S. Hao, S. Cui, Y. (2021). Aboveground biomass estimation in forests with random forest and Monte Carlo-based uncertainty analysis. Ecological Indicators, 142 (2022) 109246. https://doi.org/10.1016/j.ecolind.2022.109246
Lorey T. (1878). Die mittlere Bestandeshöhe. Allgemeine Forst- und Jagdzeitung, 54: 149-155. (in German).
Lu, D., & Jiang, X. (2024). A brief overview and perspective of using airborne Lidar data for forest biomass estimation. International Journal of Image and Data Fusion, 1–24. https://doi.org/10.1080/19479832.2024.2309615
Lu, D., Chen, Q., Wang, G., Moran, E., Batistella, M., Zhang, M., . . . Saah, D. (2012). Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. International Journal of Forestry Research, 2012, 1–16. https://doi.org/10.1155/2012/436537
Madugundu, R., Nizalapur, V., & Jha, C. S. (2008). Estimation of LAI and above-ground biomass in deciduous forests: Western Ghats of Karnataka, India. International Journal of Applied Earth Observation and Geoinformation, 10(2), 211–219. https://doi.org/10.1016/j.jag.2007.11.004
Mora, B., Wulder, M., White, J., & Hobart, G. (2013). Modeling Stand Height, Volume, and Biomass from Very High Spatial Resolution Satellite Imagery and Samples of Airborne LiDAR. Remote Sensing, 5(5), 2308–2326. https://doi.org/10.3390/rs5052308
Nandy, S. Srinet, R. Padalia, H. (2021). Mapping forest height and aboveground biomass by integrating ICESat-2, Sentinel-1 and Sentinel-2 data using Random forest algorithm in northwest Himalayan foothills of India. Geophysical Research Letters, 48, e2021GL093799. https://doi.org/10.1029/2021GL093799
Nelson, R., Ranson, K., Sun, G., Kimes, D., Kharuk, V., & Montesano, P. (2009). Estimating Siberian timber volume using MODIS and ICESat/GLAS. Remote Sensing of Environment, 113(3), 691–701. https://doi.org/10.1016/j.rse.2008.11.010
Pasha, S. V., Dadhwal, V. K., & Reddy, C. S. (2023). Rubber expansion and age-class mapping in the state of Tripura (India) 1990–2021 using multi-year and multi-sensor data. Environmental Monitoring and Assessment, 195(2). https://doi.org/10.1007/s10661-023-10942-2
Rajab Pourrahmati, M., Baghdadi, N., Darvishsefat, A. A., Namiranian, M., Gond, V., Bailly, J. S., & Zargham, N. (2017). Mapping Lorey’s height over Hyrcanian forests of Iran using synergy of ICESat/GLAS and optical images. European Journal of Remote Sensing, 51(1), 100–115. https://doi.org/10.1080/22797254.2017.1405717
Ramachandran, N., Saatchi, S., Tebaldini, S., d’Alessandro, M. M., & Dikshit, O. (2023). Mapping tropical forest aboveground biomass using airborne SAR tomography. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-33311-y
Reddy, C. S., Jha, C. S., Dadhwal, V. K., Hari Krishna, P., Vazeed Pasha, S., Satish, K. V., . . . Diwakar, P. G. (2015). Quantification and monitoring of deforestation in India over eight decades (1930–2013). Biodiversity and Conservation, 25(1), 93–116. https://doi.org/10.1007/s10531-015-1033-2
Reddy, C. S., Rajashekar, G., Hari Krishna, P., Jha, C., & Dadhwal, V. (2015). Multi-source and multi-date mapping of deforestation in Central India (1935-2010) and its implication on standing phytomass carbon pool. Ecological Indicators, 57, 219–227. https://doi.org/10.1016/j.ecolind.2015.05.003
Reddy, C. S., Rakesh, F., Jha, C., Athira, K., Singh, S., Alekhya, V. P., . . . Dadhwal, V. (2016). Geospatial assessment of long-term changes in carbon stocks and fluxes in forests of India (1930–2013). Global and Planetary Change, 143, 50–65. https://doi.org/10.1016/j.gloplacha.2016.05.011
Rodda, S. R., Nidamanuri, R. R., Fararoda, R., Mayamanikandan, T., & Rajashekar, G. (2023). Evaluation of Height Metrics and Above-Ground Biomass Density from GEDI and ICESat-2 Over Indian Tropical Dry Forests using Airborne LiDAR Data. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-023-01693-1
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., . . . Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences, 108(24), 9899–9904. https://doi.org/10.1073/pnas.1019576108
Salunkhe, O., Khare, P. K., Sahu, T. R., Singh, S. (2014). Above Ground Biomass and Carbon Stocking in Tropical Deciduous Forests of State of Madhya Pradesh, India. Taiwania 59(4): 353-359. https://taiwania.ntu.edu.tw/pdf/tai.2014.59.353.pdf
Schutz, B. E., Zwally, H. J., Shuman, C. A., Hancock, D., & DiMarzio, J. P. (2005). Overview of the ICESat Mission. Geophysical Research Letters, 32(21). https://doi.org/10.1029/2005gl024009
Shufan, W., & Chun, L. (2022). Urban forest canopy height modeling using spaceborne laser ICESAT-2 LIDAR. IOP Conference Series: Earth and Environmental Science, 1004(1), 012023. https://doi.org/10.1088/1755-1315/1004/1/012023
Simard, M., Pinto, N., Fisher, J. B., & Baccini, A. (2011). Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research, 116(G4). https://doi.org/10.1029/2011jg001708
Sun, G., Ranson, K. J., Guo, Z., Zhang, Z., Montesano, P., & Kimes, D. (2011). Forest biomass mapping from lidar and radar synergies. Remote Sensing of Environment, 115(11), 2906–2916. https://doi.org/10.1016/j.rse.2011.03.021
The R Core Team. (2015). R: A language and environment for statistical computing (Reference Index). R Foundation for Statistical Computing, Vienna, Austria. https://cran.r-hub.io/doc/manuals/fullrefman.pdf
Thumaty, K. C., Fararoda, R., Middinti, S., Gopalakrishnan, R., Jha, C. S., & Dadhwal, V. K. (2015). Estimation of Above Ground Biomass for Central Indian Deciduous Forests Using ALOS PALSAR L-Band Data. Journal of the Indian Society of Remote Sensing, 44(1), 31–39. https://doi.org/10.1007/s12524-015-0462-4
Tomppo, E., Halme, M. (2004). Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: a genetic algorithm approach. Remote Sensing of Environment, 92(1), 1–20. https://doi.org/10.1016/j.rse.2004.04.003
Urbazaev, M. Thiel, C. Cremer, F. Dubayah, R. Migliavacca, M. Reichstein, M. Schmullius, C. (2018). Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico. Carbon Balance Manage (2018) 13:5. https://doi.org/10.1186/s13021-018-0093-5
Wang, Y., Peng, Y., Hu, X., & Zhang, P. (2023). Fine-Resolution Forest Height Estimation by Integrating ICESat-2 and Landsat 8 OLI Data with a Spatial Downscaling Method for Aboveground Biomass Quantification. Forests, 14(7), 1414. https://doi.org/10.3390/f14071414
Yadav, S., Padalia, H., Sinha, S. K., Srinet, R., & Chauhan, P. (2021). Above-ground biomass estimation of Indian tropical forests using X band Pol-InSAR and Random Forest. Remote Sensing Applications: Society and Environment, 21, 100462. https://doi.org/10.1016/j.rsase.2020.100462
Zwally, H., Schutz, B., Abdalati, W., Abshire, J., Bentley, C., Brenner, A., . . . Thomas, R. (2002). ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. Journal of Geodynamics, 34(3–4), 405–445. https://doi.org/10.1016/s0264-3707(02)00042-x

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)