Role of fluorine doping on the electron transport layer of F-doped TiO2 (Titanium dioxide) for photovoltaic systems and its environmental impact
Article Main
Abstract
Photovoltaic (PV) systems are regarded as clean and sustainable energy sources and exhibit minimal pollution during their lifetime. The production of hazardous contaminants contaminating water resources, emissions of air pollutants during the manufacturing process, and the impact of PV installations on land use are important environmental factors to consider. The present study aimed to synthesise the F-doped Titanium dioxide (TiO2) thin films on a glass substrate employing spin coating followed by the sol-gel process ETL application purpose. Fluorine-doped TiO2 thin films were prepared using the sol-gel spin coating technique. The X-ray diffraction (XRD) results confirmed that the most intense peak was observed at 25.37° corresponding to the crystallographic plane (101) for anatase TiO2. The average transparency of TiO2 was increased by adding the doping level of fluorine and increment in the optical bandgap. The thickness of the thin film was kept at about 300 nm. The resistance of nanocrystalline thin films of different F doped TiO2 was decreased from 1.322×1012 Ω, 9.728×1011 Ω, as the F doping concentration was increased from pristine to 7 at. %. Based on electrical measurements, it was observed that a suitable electron transport layer (ETL) of F-doped TiO2 can be synthesized for photovoltaic applications. The present study offers a synthesis and analysis of F-doped TiO2 that can be used to improve the sustainability of PV manufacturing processes, improve its economic value, and mitigate its negative impact on the environment.
Article Details
Article Details
Electron transport layer, Environmental impact, F-doped TiO2, Optical properties, Sol-gel preparation, Thin films
Asemi, M., Maleki, S. & Ghanaatshoar, M. (2017). Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer. Journal of Sol-Gel Science and Technology, 81(3), 645–651. https://doi.org/10.1007/s10971-016-4257-z
Che, M., Fang, Y., Yuan, J., Zhu, Y., Liu, Q.m& Song, J. (2017). F-doped TiO2 compact film for high-efficient perovskite solar cells. International Journal of Electrochemical Science, 12(2), 1064–1074. https://doi.org/10.20964/ 2017.02.21
Choudhary, K., Saini, R., Upadhyay, G. K., Rana, V. S. & Purohit, L. P. (2021). Wrinkle type nanostructured Y-doped ZnO thin films for oxygen gas sensing at lower operating temperature. Materials Research Bulletin, 141(March), 111342. https://doi.org/10.1016/j.materresbull.2021.111342
Davis, K., Yarbrough, R., Froeschle, M., White, J. & Rathnayake, H. (2019). Band gap engineered zinc oxide nanostructures: Via a sol-gel synthesis of solvent driven shape-controlled crystal growth. RSC Advances, 9(26), 14638–14648. https://doi.org/10.1039/c9ra02091h
Essalhi, Z., Hartiti, B., Lfakir, A., Mari, B., & Thevenin, P. (2017). Optoelectronics properties of TiO2:Cu thin films obtained by sol gel method. Optical and Quantum Electronics, 49(9). https://doi.org/10.1007/s11082-017-1142-0
Jeantelot, G., Ould-Chikh, S., Sofack-Kreutzer, J., Abou-Hamad, E., Anjum, D. H., Lopatin, S., Harb, M., Cavallo, L. & Basset, J. M. (2018). Morphology control of anatase TiO2 for well-defined surface chemistry. Physical Chemistry Chemical Physics, 20(21), 14362–14373. https://doi.org/10.1039/c8cp01983e
Karthikeyan, C., Arunachalam, P., Ramachandran, K., Al-Mayouf, A. M. & Karuppuchamy, S. (2020). Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Journal of Alloys and Compounds, 828, 154281. https://doi.org/10.1016/j.jallcom.2020.154281
Kazeminezhad, I., Saadatmand, S. & Yousefi, R. (2016). Effect of transition metal elements on the structural and optical properties of ZnO nanoparticles. Bulletin of Materials Science, 39(3), 719–724. https://doi.org/10.1007/s12034-016-1206-y
Larumbe, S., Monge, M. & Gómez-Polo, C. (2015). Comparative study of (N, Fe) doped TiO2 photocatalysts. Applied Surface Science, 327, 490–497. https://doi.org/10.1016/j.apsusc.2014.11.137
Mathankumar, G., Bharathi, P., Mohan, M. K., Harish, S., Navaneethan, M., Archana, J., Suresh, P., Mani, G. K., Dhivya, P., Ponnusamy, S. & Muthamizhchelvan, C. (2020). Synthesis and functional properties of nanostructured Gd-doped WO3/TiO2 composites for sensing applications. Materials Science in Semiconductor Processing, 105(April 2019), 104732. https://doi.org/10.1016/j.mssp.2019.104732
Mishra, A., Panigrahi, A., Mal, P., Penta, S., Padmaja, G., Bera, G., Das, P., Rambabu, P. & Turpu, G. R. (2020). Rapid photodegradation of methylene blue dye by rGO- V2O5 nano composite. Journal of Alloys and Compounds, 842, 155746. https://doi.org/10.1016/j.jallcom.202 0.155746
Panwar, S., Upadhyay, G. K., & Purohit, L. P. (2022). Gd-doped ZnO:TiO2 heterogenous nanocomposites for advance oxidation process. Materials Research Bulletin, 145(August 2021), 111534. https://doi.org/10.1016/j.materresbull.2021.111534
Rajput, J. K., Pathak, T. K., Kumar, V., Swart, H. C., & Purohit, L. P. (2018). CdO:ZnO nanocomposite thin films for oxygen gas sensing at low temperature. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 228, 241–248. https://doi.org/10.1016/j.mseb.2017.12.002
Sharma, H. K., Sharma, S. K., Vemula, K., Koirala, A. R., Yadav, H. M., & Singh, B. P. (2021). CNT facilitated interfacial charge transfer of TiO2 nanocomposite for controlling the electron-hole recombination. Solid State Sciences, 112, 106492. https://doi.org/https://doi.org/10.1016/j.solidstatesciences.2020.106492
Sharma, H. K., Singh, B. P., & Sharma, S. K. (2024). CNT-TiO2 nanocomposite thin films enhanced photocatalytic degradation of methylene blue. Hybrid Advances, 5, 100152. https://doi.org/https://doi.org/10.1016/j.hybadv.2024.100152
Singh, K., Harish, S., Archana, J., Navaneethan, M., Shimomura, M., & Hayakawa, Y. (2019). Investigation of Gd-doped mesoporous TiO2 spheres for environmental remediation and energy applications. Applied Surface Science, 489, 883–892. https://doi.org/10.1016/j.apsusc.2019.05.253
Tian, J., Gao, H., Deng, H., Sun, L., Kong, H., Yang, P., & Chu, J. (2013). Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon(100) substrates by sol-gel process. Journal of Alloys and Compounds, 581, 318–323. https://doi.org/10.1016/j.jallcom.2013.07.105
Tian, L., Giusti, G., Dan, C. Y., Cagnon, L., Volpi, F., Mantoux, A., & Daniele, S. (2013). Characterization of Nitrogen-Doped TiO2 Thin Films for Photovoltaic Applications. 2479–2482.
Upadhyay, G. K., Kumar, V., & Purohit, L. P. (2021). Optimized CdO:TiO2 nanocomposites for heterojunction solar cell applications. Journal of Alloys and Compounds, 856, 157453. https://doi.org/10.1016/j.jallcom.2020.157453
Upadhyay, G. K., Rajput, J. K., Pathak, T. K., Swart, H. C., & Purohit, L. P. (2020). Photoactive CdO:TiO2 nanocomposites for dyes degradation under visible light. Materials Chemistry and Physics, 253, 123191. https://doi.org/10.1016/j.matchemphys.2020.123191
Wang, H., Zhao, C., Yin, L., Li, X., Tu, X., Lim, E. G., Liu, Y., & Zhao, C. Z. (2021). W-doped TiO2 as electron transport layer for high performance solution-processed perovskite solar cells. Applied Surface Science, 563(May), 150298. https://doi.org/10.1016/j.apsusc.2021.150298
Xiang, Y., Ma, Z., Zhuang, J., Lu, H., Jia, C., Luo, J., Li, H. & Cheng, X. (2017). Enhanced Performance for Planar Perovskite Solar Cells with Samarium-Doped TiO2 Compact Electron Transport Layers. Journal of Physical Chemistry C, 121(37), 20150–20157. https://doi.org/10.1021/acs.jpcc.7b05880
Yahya, N., Aziz, F., Jamaludin, N. A., Mutalib, M. A., Ismail, A. F., Salleh, W. N., Jaafar, J., Yusof, N. & Ludin, N. A. (2018). A review of integrated photocatalyst adsorbents for wastewater treatment. Journal of Environmental Chemical Engineering, 6(6), 7411–7425. https://doi.org/10.1016/j.jece.2018.06.051
Yang, W., Wang, X., Li, H., Wu, J., Hu, Y., Li, Z. & Liu, H. (2019). Fundamental research on the effective contact area of micro-/nano-textured surface in triboelectric nanogenerator. Nano Energy, 57(December 2018), 41–47. https://doi.org/10.1016/j.nanoen.2018.12.029
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)