Article Main

Amman Shafeen Sarwan W. Bradosty Faiyaz K. Shaikh Raghavendra L. S. Hallur

Abstract

Pithecellobium dulce is a tropical tree known for its medicinal properties, which are traditionally used in folk medicine to treat ailments such as diabetes and inflammation. Recent research has focused on exploring its bioactive compounds to validate its therapeutic potential. This study investigates the antioxidant and amylase inhibitory potential of methanolic extracts from the ripe seeds and coats of P. dulce, previously overlooked plant parts. Phytochemical analysis of both seed and coat extracts was conducted using standard qualitative methods, revealing the presence of alkaloids, flavonoids, glycosides, saponins, steroids, tannins, proteins, phenols, and terpenoids. The Total Phenolic Content (TPC) in ripe seeds was 9.11±0 mg GAE/g, while the fruit coat measured 3.056±0.5 mg GAE/g. Quantitative assessment of Total Flavonoids Content (TFC) indicated the presence of 36.4±0.8 mg RE/g in the seed extract and 31.64±0.4 mg RE/g in the fruit coat. The seed extract displayed substantial saponin content (118.4±14.1 mg/g dry extract saponin equivalents). Phytoconstituents identified with GC-MS showed antioxidant, anti-inflammatory, and anticancer properties, including Phytol, n-Hexadecanoic acid, cis-Vaccenic acid, 9,11-Octadecadienoic acid, methyl ester (E,E), Oleoyl chloride, Eugenol, Benzofuran, 2,3-dihydro, and 5-Hydroxymethylfurfural. Antioxidant activities, assessed through DPPH, reducing power, and metal chelating assays, demonstrated IC50 values of 1378.3 µg/mL and 36.7 µg/mL (DPPH scavenging) for seed and coat extracts, respectively. Significant inhibition of α-amylase activity was observed, with the coat extract exhibiting the highest inhibition at 55%. This study enhances the understanding of the phytochemical composition and bioactivities of ripe seeds and coats of P. dulce, providing a foundation for future research to fully realize the plant's therapeutic benefits. ​


 

Article Details

Article Details

Keywords

Bioactivities, Medicinal potential, Methanolic extracts, Phytoconstituents, Pithecellobium dulce

References
Aldarhami, A., Bazaid, A. S., Alhamed, A. S., Alghaith, A. F., Ahamad, S. R., Alassmrry, Y. A., & Alreshidi, M. (2023). Antimicrobial Potential of Pithecellobium dulce Seed Extract against Pathogenic Bacteria: In Silico and In-Vitro Evaluation. BioMed Research International, 2023. https://doi.org/10.1155/2023/2848198
Bao, J., Cai, Y., Sun, M., Wang, G., & Corke, H. (2005). Anthocyanins, Flavonols, and Free Radical Scavenging Activity of Chinese Bayberry (Myrica rubra) Extract and Their Color Properties and Stability. Journal of Agricultural and Food Chemistry, 53, 2327-2332. https://doi.org/10.1021/jf048312z
Bhalodia, N. R., Nariya, P. B., Acharya, R. N., & Shukla, V. J. (2013). In Vitro Antioxidant Activity of Hydroalcoholic Extract from the Fruit Pulp of Cassia fistula Linn. Ayu, 34(2), 209-214. https://doi.org/10.4103/0974-8520.119684
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. Journal of Food and Drug Analysis, 10(3). https://doi.org/10.38212/2224-6614.2748
Chelliah, R., & Oh, D. H. (2022). Screening for Antioxidant Activity: Metal Chelating Assay. In: Methods in Actinobacteriology. Springer Protocols Handbooks, Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1728-1_63
Chen, Y. F., Roan, H. Y., Lii, C. K., Huang, Y. C., & Wang, T. S. (2011). Relationship Between Antioxidant and Antiglycation Ability of Saponins, Polyphenols, and Polysaccharides in Chinese Herbal Medicines Used to Treat Diabetes. Journal of Medicinal Plants Research, 5(11), 2322-2331.
Diaz, P., Phatak, S. S., Xu, J., Fronczek, F. R., Astruc-Diaz, F., Thompson, C. M., Cavasotto, C. N., & Naguib, M. (2009). 2,3-Dihydro-1-benzofuran Derivatives as a Series of Potent Selective Cannabinoid Receptor 2 Agonists: Design, Synthesis, and Binding Mode Prediction Through Ligand-Steered Modeling. Chem Med Chem, 4(10), 1615-1629. https://doi.org/10.1002/cmdc.200900226
Getie, M., Gebre-Mariam, T., Rietz, R., & Neubert, R. H. H. (2002). Evaluation of the Release Profiles of Flavonoids from Topical Formulations of the Crude Extract of the Leaves of Dodonea viscosa (Sapindaceae). Die Pharmazie, 57(5), 320-322.
Güder, A., & Korkmaz, H. (2012). Evaluation of In-Vitro Antioxidant Properties of Hydroalcoholic Solution Extracts Urtica dioica L., Malva neglecta Wallr. and Their Mixture. Iranian Journal of Pharmaceutical Research, 11(3), 913-923.
Hallur RL, Motamarri CV, Ramamoorthy PK, Murthy CD, Siddappa RP, Bramhanakonda VN. Gas chromatography-mass spectrometry fingerprint and in vitro cytotoxic studies of Rubus steudneri leaf fractions against michigan cancer foundation-7 breast cancer cell line. Phcog Mag 2021;17:S54-62.
Harada, H., Yamashita, U., Kurihara, H., Fukushi, E., Kawabata, J., & Kamei, Y. (2002). Antitumor Activity of Palmitic Acid Found as a Selective Cytotoxic Substance in a Marine Red Alga. Anticancer Research, 22(5), 2587-2590.
Hemlata, B., Pornima, G., Tukaram, K., & Pankaj, B. (2019). In Vitro Antiamylase Activity of Some Indian
Dietary Spices. Journal of Applied Biology and Biotechnology, 7(04), 70–74. https://doi.org/10.7324/JABB.2019.704011
Islam, M. T., Ali, E. S., Uddin, S. J., Shaw, S., Islam, M. A., Ahmed, M. I., Chandra Shill, M., Karmakar, U. K., Yarla, N. S., Khan, I. N., Billah, M. M., Pieczynska, M. D., Zengin, G., Malainer, C., Nicoletti, F., Gulei, D., Berindan-Neagoe, I., Apostolov, A., Banach, M., Yeung, A. W. K., El-Demerdash, A., Xiao, J., Dey, P., Yele, S., Jóźwik, A., Strzałkowska, N., Marchewka, J., Rengasamy, K. R. R., Horbańczuk, J., Kamal, M. A., Mubarak, M. S., Mishra, S. K., Shilpi, J. A., & Atanasov, A. G. (2018). Phytol: A Review of Biomedical Activities. Food and Chemical Toxicology, 121, 82-94. https://doi.org/10.1016/j.fct.2018.08.032
Kondabolu, U. L., Babitha, B., Kalagatur, N. K., Nagaraj, A., & Velumani, S. (2023). Phytochemical Analysis in Pithecellobium dulce Fruit Peel Extract. Current Trends in Biotechnology and Pharmacy, 17(3), 1052–1059.
Kumar, M., Govindrajan, J., & Nyola, N. K. (2017). Antihyperglycemic Potential of Saponin-enriched Fraction from Pithecellobium dulce Benth. Seed Extract. Pharmacognosy Research, 9(Suppl 1), S23–S26. https://doi.org/10.4103/pr.pr_18_17
Kumari, S. (2017). Evaluation of Phytochemical Analysis and Antioxidant and Antifungal Activity of Pithecellobium Dulce Leaves' Extract. Asian Journal of Pharmaceutical and Clinical Research, 370-375.
Lee, H., et al. (2022). Novel terpenoids from Artemisia annua with significant anticancer activities. Journal of Natural Products, 85(2), 421-428.
Liu, S., Cheng, X., Sun, S., Chen, Y., Bian, B., Liu, Y., Tong, L., Yu, H., Ni, Y., & Yu, S. (2021). High-Yield and High-Efficiency Conversion of HMF to Levulinic Acid in a Green and Facile Catalytic Process by a Dual-Function Brønsted-Lewis Acid HScCl4 Catalyst. ACS Omega, 6(24), 15940-15947. https://doi.org/10.1021/acsomega. 1c01607
Liu, X., Strable, M. S., & Ntambi, J. M. (2011). Stearoyl CoA Desaturase 1: Role in Cellular Inflammation and Stress. Advances in Nutrition, 2, 15-22. https://doi.org/10.3945/an.110.000125
Marchese, A., Barbieri, R., Coppo, E., Orhan, I. E., Daglia, M., Nabavi, S. F., Izadi, M., Abdollahi, M., Nabavi, S. M., & Ajami, M. (2017). Antimicrobial Activity of Eugenol and Essential Oils Containing Eugenol: A Mechanistic Viewpoint. Critical Reviews in Microbiology, 43(6), 668-689. https://doi.org/10.1080/1040841X.2017.1295225
Murugesan, S., Lakshmanan, D. K., Arumugam, V., & Alexander, R. A. (2019). Nutritional and Therapeutic Benefits of Medicinal Plant Pithecellobium dulce (Fabaceae): A Review. Journal of Applied Pharmaceutical Science, 9(7), 130-139. https://doi.org/10.7324/JAPS.2019.90718
Nagmoti, D. M., & Juvekar, A. R. (2013). In Vitro Inhibitory Effects of Pithecellobium dulce (Roxb.) Benth. Seeds on Intestinal α-Glucosidase and Pancreatic α-Amylase. Journal of Biochemical Technology, 4(3), 616-621.
Nahrin, A., Junaid, M., Afrose, S. S., Alam, M. S., Hosen, S. M., Akter, R., & Sharmin, T. (2020). A Review of Saurauia roxburghii Wall.(Actinidiaceae) as a Traditional Medicinal Plant, Its Phytochemical Study and Therapeutic Potential. Mini Reviews in Medicinal Chemistry, 20(19), 2036-2051. https://doi.org/10.2174/1389557520666200 709175138
Niranjan, P. S., Kazuo, K., Zhonghua, J., Sukdeb, B., Basudeb, A., & Tamotsu, N. (1999). A Minor Acylated Triterpenoid Saponin from the Seeds of Pithecellobium dulce. Journal of Chemical Research (s), 32, 558-559.
Patel, S., et al. (2021). Anti-inflammatory and antioxidant effects of flavonoids: Potential in preventing cardiovascular diseases and cancer. Journal of Nutritional Biochemistry, 89, 108559.
Pío-León, J. F., Díaz-Camacho, S., Montes-Avila, J., López-Angulo, G., & Delgado-Vargas, F. (2013). Nutritional and Nutraceutical Characteristics of White and Red Pithecellobium dulce (Roxb.) Benth Fruits. Fruits, 68(5), 397-408.
Segaran, A., & Chua, L. S. (2020, December). Saponins Rich Fractions from Eurycoma longifolia Extract. In Third International Conference on Separation Technology 2020 (ICoST 2020) (pp. 57-61). Atlantis Press.
Selvakumar, M., Dinesh Kumar, L., & Velusamy, A. (2019). Nutritional and Therapeutic Benefits of Medicinal Plant Pithecellobium dulce (Fabaceae): A Review. Journal of Applied Pharmaceutical Science, 9(07), 130–139.
Semwal, P., Anthwal, P., Kapoor, T., & Thapliyal, A. (2014). Preliminary Investigation of Phytochemicals of Saussurea obvallata (Brahm Kamal) and Pittosporum eriocarpum (Agni): Two Endangered Medicinal Plant Species of Uttarakhand. International Journal of Pharmacognosy, 1(4), 266-269.
Smith, J., et al. (2020). Antimicrobial properties of alkaloids against multi-drug resistant bacteria. Phytomedicine, 77, 153231.
Visioli, F., Poli, A., & Gall, C. (2002). Antioxidant and Other Biological Activities of Phenols from Olives and Olive Oil. Medicinal Research Reviews, 22(1), 65-75. https://doi.org/10.1002/med.1028
Wang, Y., et al. (2023). Phenolic compounds in managing type 2 diabetes: A meta-analysis. Diabetes Research and Clinical Practice, 194, 110166.
Yoshikawa, K., Suzaki, Y., Tanaka, M., Arihara, S., & Nigam, S. K. (1997). Three Acylated Saponins and a Related Compound from Pithecellobium dulce. Journal of Natural Products, 60(12), 1269-1274.
Zhang, J., Liu, Y., Yang, S., Wei, J., He, L., Peng, L., Tang, X., & Ni, Y. (2020). Highly Selective Conversion of Furfural to Furfural Alcohol or Levulinate Ester in One Pot Over ZrO2@SBA-15 and Its Kinetic Behavior. ACS Sustainable Chemistry & Engineering, 8, 5584–5594. https://doi.org/10.1021/acssuschemeng.9b07512
Section
Research Articles

How to Cite

Phytoconstituents analysis of ripe Pithecellobium dulce seeds and coats: Insights from Gas Chromatography-Mass Spectrometry (GC-MS) and bioactivity assessment. (2025). Journal of Applied and Natural Science, 17(1), 87-95. https://doi.org/10.31018/jans.v17i1.5829