Regeneration of Indian maize genotypes (Zea mays L.) from immature embryo culture through callus induction
Article Main
Abstract
Callus induction and regeneration ability of five maize genotypes UMI 757, UMI 615, UMI 112, UMI 285 and CO 1 and one promising maize hybrids COH(M) 5 were investigated using 14 days old immature embryos as explants. Callus induction depends on genotype, explants (age and size of explants), medium, type of auxin and their concentration. Explants grown on Murashige and Skoog (MS) medium supplemented with 1.5 mg/l 2, 4 - D (2,4 – dichloro phenoxy acetic acid), 0.3 mg/l kinetin with 30 g/l maltose showed the highest percentage of embryogenic callus induction. Among the six genotypes tested, COH(M) 5 maize hybrids have highest percentage of embryogenic calli. The embryogenic calli incubated on MS medium supplemented with 1.5 mg/l BAP (Benzyl Amino Purine), 0.2 mg/lNAA (Naphthalene Acetic Acid) with 1.0 mg/l kinetin was found to give the highest organogenesis response and regeneration of plantlets.
Article Details
Article Details
Callus induction, Immature embryo, Maize, Regeneration
Agrawal, P.K., Gosal, S.S. and Sidhu, G.S. (2006). Sequential reduction of 2, 4-D improves whole plant regeneration from long term maintained calli in some indica cultivars of rice. Oryza, 43: 10-15.
Aguado - Santacruz, G.A., Moya, E.G., Acuna, J.L.A., Gomez, B.M., Moya, E.S., Ortiz, E.R.P., Bremont, J. F.J. and Cruz, Q.R. (2007). In vitro plant regeneration from quality Protein Maize. In vitro Cell. Dev. Biol., 43: 215-224.
Ahmadabadi, M., Ruf, S. and Bock, R. (2007). A leaf based regeneration and transformation system for maize (Zea mays L.). Transgenic Res.,16: 437-448.
Al-Abed, D., Rudrabhatla, S., Talla, R. and Goldman, S. (2006). Split-seed: a new tool for maize researchers. Planta, 223: 1355-1360.
Ansari, N.A. (1997). Tissue culture studies in maize (Zea mays L.) Ph.D. (Ag.) Thesis, TNAU, Coimbatore.
Barloy, D. and Beckert, M. (1993). Improvement of regeneration ability of androgenetic embryos by early anther transfer in maize plant. Plant Cell Tissue Organ Cult., 33: 45-50.
Bhaskaran, S. and Smith, R.A. (1990). Regeneration in cereal tissue culture a review. Crop Sci., 30: 1328-1336.
Binott, J.J., Songa, J.M., Ininda, J., Njagi, E.M. And Machuka, J.(2008). Plant regeneration from immature embryos of Kenyan maize in bread lines and their respective single cross hybrids through somatic embryogenic. African Journal of Biotechnology, 7: 981-987.
Bohorova, N.E., Luna, B., Brito, R.M., Huerta, L.D. and Hoisington, D.A. (1995). Regeneration potential of tropical, substropical, medaltitude and highland maize inbreds. Maydica, 40: 275-281.
Carvalho, C.H.S., Bohorova, N., Bordallo, P.N., Abreu, L.L., Valicente, F.H., Bressan, W. and Paiva, E. (1997). Type II callus production and plant regeneration in typical maize genotypes, Plant Cell Rep., 17: 73-76.
Danson, J.W., Lagat, M. and Mbogori, M. (2006). Screening tropical maize lines for the production and regeneration of friable and embryogenic type II callus. African Journal of Biotechnology, 5: 2367-2370.
Duncan, D.R., Williams, M.E., Zehr, B.E. and Widholm, M. (1985). The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta, 165: 322-332.
Duvick, D.N. (1998). Crop improvement: emerging trends in maize. In: Crop productivity and sustainability. Shaping the future. Oxford and IBH publishing co., New Delhi, pp: 127-138.
FAO,(2009). FAOSTAT.Food and Agricultural Organization retrieved from http://faostat.fao.org
Furini, A. and Jewell, D.C. (1994). Somatic embryogenesis and plant regeneration from immature embryos of tropical and subtropical Zea mays L. genotypes. Maydica, 39: 155-164.
Gomez, K.A. and Gomez, A.A. (1984). Statistical procedures for Agricultural Research. John Wiley and Sons. Inc., New York. 680.
Gordon-Kamm, W., Dilkes, B.P., Lowe, K., Hoerster, G., Sun, X., Ross, M., Church, K.D., Bunde, C., Farell, J., Maddock, S., Snyder, J., Skyes, L., Li, Z., Woo, Y. M., Bidney, D. and Larkins, B.A. (1990). Stimulation of the Cell cycle and maize transformation by disruption of the plant retinoblastoma path way. Proc. Natl. Acad. Sci., USA, 99: 11975-11980.
Green, C.E. and Philips. R.C. 1975. Plant regeneration from tissue cultures of maize. Crop Sci., 15: 417-421.
Huang, X.Q and Wei. Z.M. (2004). High frequency plant regeneration through callus initiation from mature embryos of maize. Plant Cell Rep., 22: 793-800.
Ishida, Y., Saito, S.H., Ohta, S., Hiei, Y., Komari, T. and Kumashiro, T. (1996). High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotech., 14: 745-750.
Katiyar, S. K., Chandel, G., Singh and Pratibha., R. (1999). Genetic variation and effect of 2,4-D on in vitro plant regeneration in indica rice cultivars. Oryza, 36: 254-256.
Koziel, M., Beland, G.I., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., Pherson, K., Meghji, M., Merlin, M., Rhodes, R., Warren, G.W., Wright, M. and Evolas, S. (1993). Field performance of elite transgenic maize plant expressing an insectisidal protein derived from Bacillus thuringiensis. Biol. Tech., 11: 194-200.
Machuka, J.S. (2001). Agricultural Biotechnology for Africa. Africa scientists and farmers must feed their own people. Plant Physiol., 126: 16-19.
Manivannan, A., Kaul, J., Singode, A. and Dass, S. (2010). Callus induction and regeneration of elite Indian maize inbreds. African Journal of Biotechnology, 9(44): 7446-7452.
Morocz, C., Donn, G., Nemeth, J. and Dudits, D. (1990). An improved system to obtain fertile regenerants via maize protoplast isolated from highly embryogenic suspension culture. Theor. Appl. Genet., 80: 712-726.
Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plantarum., 15: 473-497.
Odour, R.O., Njagi, E.N.M., Ndung’u, S. and Machuka, J.S. (2006). Invitro regeneration of Dryland Kenyan Maize Genotypes through somatic embryogenesis. International Journal of Botany, 2: 146-151.
Omer, R.A., Ali, A.M., Matheka, J.M. and Machuka, J. (2008). Regeneration of Sudanese maize in bred lines and open pollinated varieties. African Journal of Biotechnology, 7: 1759-1764.
Pareddy, D.R. and Petolino, J.F. (1990). Somatic embryogenesis and plant regeneration from immature inflorescence of several elite inbreds of maize. Euphytica, 67: 211-219.
Pingali, P.L. and Pandy, S. (2001). Meeting world maize needs: Technological Opportunities and priorities for the public sector. In: CIMMYT. 1999 - 2000. World Maize Facts and Trends, Mexico. Pp. 1-20.
Rakshit, S.Z. Rashid, J.C. Sekhar, Fatma, T. and Das. S. (2010). Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) inbreds. Plant Cell Tissue Organ cult. 100: 31-37.
Rooz, BBK. (2002). Plastid transformation in maize: construction and testing of vector, dissertion, Post Graduate School, Indian Agricultural Research Institute, New Delhi, India.
Sairam, R.V., Paran, M., Franklin, G., Lifeng, Z., Smith, B., Macdougall, J., Wilber, C., Sheikhi, H., Meeker, N., Al-Abed, D., Berry, K., Vierling, R. and Goldman, S.L. (2003). Shoot meristem an ideal explants for Zea mays L. transformation. Genome, 46: 323-329.
Shohael, A.M., Akanda, M.A.L., Parvez, S. and Mahfuja, S. (2003). Somatic embryogenesis and plant regeneration from immature embryo derived callus of inbred maize (Zea mays L.). Biotech., 2: 154-161.
Slater, A., Scott, N.W. and Fowler, M.R. (2004). The genetic manipulation of plants. Oxford University Press Inc. N. Y., USA, Plant biotechnology : 35-52.
Sumathi, R. (1992). Studies on callus organization and in vitro organogenesis in rice (Oxyza sativa L.) M.Sc., (Ag.) Thesis, TNAU, Coimbatore.
Vladimir, S., Gilberton, L., Adae, P. and Duncan, D. (2006). Agrobacterium mediated transformation of seedling-derived maize callus. Plant cell Rep., 25: 320-328.
Wenbin, L., Masilamany, P., Kasha, K.J. and Pauls, P. (2002). Development, tissue culture and genotypic factors affecting plant regeneration from shoot apical meristem of germinated Zea mays seedlings. In vitro cellular and Developmental Biology. 38: 285-292.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)