Article Main

Bidyabhusan Bera Kangujam Bokado Barkha

Abstract

Climate-resilient farming represents a sustainable strategy for transposing and redirecting agricultural methodology to uphold food safety in the context of the evolving challenges of climatic variability acquired through various adaptation and mitigation strategies. The consequences of climate change have an enormous effect on agricultural operations due to their responsiveness to fluctuations in multiple factors, including temperature, rainfall, natural phenomena, and calamities such as floods and droughts. On average, these extreme weather patterns have the potential to influence agricultural earnings. Furthermore, rice-based production systems also significantly contribute to climatic change by increasing greenhouse gas emissions significantly. The mitigation of challenges can be achieved by augmenting farmers' adaptability while enhancing the flexibility and efficiency of resource utilization in agricultural systems. Several agricultural practices such as integrated nutrient management, integrated weed management, direct seeded rice, System of rice intensification, conservation practices, bed planting, crop residue management, etc. adaptation in agricultural production systems are beneficial approaches to mitigate climatic variability and sustain long-term ecosystems. The review will help build up small-holding farming communities' capability to get the maximum possible yield with current climatic variability.


 

Article Details

Article Details

Keywords

Direct seeded rice, Greenhouse gas, Integrated nutrient management, Integrated weed management, System of rice intensification

References
Ahmed, Z., Gui, D., Qi, Z., Liu, J., Ali, A., Murtaza, G. & Ahmad, S. (2023). Greenhouse gas emissions and mitigation strategies in rice production systems. In Global Agricultural Production: Resilience to Climate Change (pp. 237-265). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-031-14973-3_8
Alam, M. J., Al-Mahmud, A., Islam, M. A., Hossain, M. F., Ali, M. A., Dessoky, E. S. & Hossain, A. (2021). Crop diversification in rice—based cropping systems improves the system productivity, profitability and sustainability. Sustainability, 13(11), 6288.
Alam, M. J., Humphreys, E. & Sarkar, M. A. R. (2017). Intensification and diversification increase land and water productivity and profitability of rice-based cropping systems on the High Ganges River Floodplain of Bangladesh. Field Crops Research, 209, 10-26.
Aryal, J. P., Khatri‐Chhetri, A., Sapkota, T. B., Rahut, D. B. & Erenstein, O. (2020). Adoption and economic impacts of laser land leveling in the irrigated rice‐wheat system in Haryana, India using endogenous switching regression. Nat. Resour. Forum., 44(3), 255-273. DOI: https://doi.org/10.1111/1477-8947.12197
Aryal, J. P., Mehrotra, M. B., Jat, M. L. & Sidhu, H. S. (2015). Impacts of laser land leveling in rice–wheat systems of the north–western indo-gangetic plains of India. Food Security, 7(3), 725-738. DOI: https://doi.org/10.1007/s12571-015-0460-y
Babu, S., Singh, R., Avasthe, R. K., Yadav, G. S. & Rajkhowa, D. J. (2016). Intensification of maize (Zea mays)–based cropping sequence in rainfed ecosystem of Sikkim Himalayas for improving system productivity, profitability, employment generation and energy-use efficiency under organic management condition. Indian Journal of Agricultural Sciences, 86(6), 778-84.
Baiswar, A., Yadav, J. S., Sain, K., Bhambri, R., Pandey, A., & Tiwari, S. K. (2023). Emission of greenhouse gases due to anthropogenic activities: an environmental assessment from paddy rice fields. Environmental Science and Pollution Research, 30(13), 37039-37054. DOI: https://doi.org/10.1007/s11356-022-24838-0
Bakhsh, A., Chauhdary, J. N. & Ahmad, N. (2018). Improving crop water productivity of major crops by adopting bed planting in Rechna Doab Pakistan. Pakistan J. Agric. Sci., 55, 965-972.
Barman, A., Saha, P., Patel, S. & Bera, A. (2022). Crop diversification an effective strategy for sustainable agriculture development. IntechOpen. DOI: http://dx.doi.org/10.5772/intechopen.102635
Behera, U. K. & France, J. (2016). Integrated farming systems and the livelihood security of small and marginal farmers in India and other developing countries. Advances in agronomy, 138, 235-282.
Bhatt, R., Singh, P., Hossain, A. & Timsina, J. (2021). Rice–wheat system in the northwest Indo-Gangetic plains of South Asia: issues and technological interventions for increasing productivity and sustainability. Paddy and Water Environment, 19(3), 345-365. DOI: https://doi.org/10.1007/s10333-021-00846-7
Cardinael, R., Chevallier, T., Cambou, A., Béral, C., Barthès, B. G., Dupraz, C. & Chenu, C. (2017). Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France. Agriculture, Ecosystems & Environment, 236, 243-255. DOI: https://doi.org/10.1016/j.agee.2016.12.011
Channabasavanna, A. S. & Biradar, D. P. (2007). Relative performance of different rice-fish-poultry integrated farming system models with respect to system productivity and economics. Karnataka Journal of Agricultural Sciences, 20(4), 706.
Choudhary, S., Choudhary, S., Baghel, S. S., Upadhyay, A. K., Singh, A. & Yadav, S. (2022). Performance of rice under IPNS-STCR based nutrients management strategy. The Pharma Innovation Journal, 11(2), 183-186.
Derpsch, R., Friedrich, T., Kassam, A. & Li, H. (2010). Current status of adoption of no-till farming in the world and some of its main benefits. International journal of agricultural and biological engineering, 3(1), 1-25.
Dey, A., Sarma, K., Kumar, U., Mohanty, S., Kumar, T. & Bhatt, B. P. (2019). Prospects of rice-fish farming system for low lying areas in Bihar, India. Organic agriculture, 9, 99-106. DOI: https://doi. org/10.1007/s13165-017-0204-8
Du, X., He, W., Gao, S., Liu, D., Wu, W., Tu, D. & Xi, M. (2022). Raised bed planting increases economic efficiency and energy use efficiency while reducing the environmental footprint for wheat after rice production. Energy, 245, 123256. DOI: https://doi.org/10.1016/j.energy.2022.123 256
Du, X., He, W., Wang, Z., Xi, M., Xu, Y., Wu, W. & Kong, L. (2021). Raised bed planting reduces waterlogging and increases yield in wheat following rice. Field Crops Research, 265, 108119. DOI: https://doi.org/10.1016/j.fcr.2021.108119
Dubey, R., Sharma, R. S. & Dubey, D. P. (2014). Effect of organic, inorganic and integrated nutrient management on crop productivity, water productivity and soil properties under various rice-based cropping systems in Madhya Pradesh, India. International Journal of Current Microbiology and Applied Sciences, 3(2), 381-389.
Eberly, J. O., Hammontree, J. W., Fordyce, S. I., Jones, C. A. & Carr, P. M. (2024). Changes in biological soil health properties in response to increased crop diversity in a dryland wheat-based cropping system. Communications in Soil Science and Plant Analysis, 1-17. DOI: https://doi.org/10.1080/00103624.2024.2345153
Farooq, A., Farooq, N., Akbar, H., Hassan, Z. U., & Gheewala, S. H. (2023). A critical review of climate change impact at a global scale on cereal crop production. Agronomy, 13(1), 162. DOI: https://doi.org/10.3390/agronomy13010162
Friedrich, T., Derpsch, R. & Kassam, A. (2011). Global overview of the spread of conservation agriculture. In Proceedings from the 5th World Congress on Conservation Agriculture, Brisbane, Australia (pp. 26-30).
Gautam, A., Singh, V. & Aulakh, G. S. (2021). Performance of paddy cultivation under different methods in South-Western part of Punjab, India. Indian Journal of Extension Education, 57(4), 131-134.
Ghale, B., Mitra, E., Sodhi, H. S., Verma, A. K. & Kumar, S. (2022). Carbon sequestration potential of agroforestry systems and its potential in climate change mitigation. Water, Air, & Soil Pollution, 233(7), 228.
Gill, M. S., Pal, S. S. & Ahlawat, I. P. S. (2008). Approaches for sustainability of rice (Oryza sativa)-wheat (Triticum aestivum) cropping system in Indo-Gangetic plains of India–A review. Indian Journal of Agronomy, 53(2), 81-96.
Gora, M. K., Kumar, S., Jat, H. S., Kakraliya, S. K., Choudhary, M., Dhaka, A. K. & Jat, M. L. (2022). Scalable diversification options delivers sustainable and nutritious food in Indo-Gangetic plains. Scientific reports, 12(1), 14371. DOI: https://doi.org/10.1038/s41598-022-18156-1
Goswami, S. B., Mondal, R. & Mandi, S. K. (2020). Crop residue management options in rice–rice system: a review. Archives of Agronomy and Soil Science, 66(9), 1218-1234. DOI: https://doi.org/10.1080/03650340.2019.16 61994
Gupta, K., Kumar, R., Baruah, K. K., Hazarika, S., Karmakar, S., & Bordoloi, N. (2021). Greenhouse gas emission from rice fields: a review from Indian context. Environmental Science and Pollution Research, 28(24), 30551-30572. DOI: https://doi.org/10.1007/s11356-021-13935-1
Habibi, E., Niknejad, Y., Fallah, H., Dastan, S. & Tari, D. B. (2019). Life cycle assessment of rice production systems in different paddy field size levels in north of Iran. Environmental monitoring and assessment, 191(4), 202. DOI: https://doi.org/10.1007/s11270-022-05689-4
Hobbs, P. R. (2007). Conservation agriculture: what is it and why is it important for future sustainable food production?. The Journal of Agricultural Science, 145(2), 127. DOI: https://doi.org/10.1017/S0021859607006892
Hombegowda, H. C., Adhikary, P. P., Jakhar, P. & Madhu, M. (2022). Alley Cropping Agroforestry System for Improvement of Soil Health. In Soil Health and Environmental Sustainability: Application of Geospatial Technology. Cham: Springer International Publishing. 529-549. DOI: https://doi.org/10.1007/978-3-031-09270-1_23
Ishfaq, M., Akbar, N., Anjum, S. A. & Anwar-Ijl-Haq, M. (2020). Growth, yield and water productivity of dry direct seeded rice and transplanted aromatic rice under different irrigation management regimes. Journal of Integrative Agriculture, 19(11), 2656-2673.
Islam, M. A., Bell, R. W., Johansen, C., Jahiruddin, M., Haque, M. E. & Vance, W. (2022). Conservation agriculture practice influences soil organic carbon pools in intensive rice‐based systems of the Eastern Indo‐Gangetic Plain. Soil Use and Management, 38(2), 1217-1236.
Jacobs, S. R., Webber, H., Niether, W., Grahmann, K., Lüttschwager, D., Schwartz, C. & Bellingrath-Kimura, S. D. (2022). Modification of the microclimate and water balance through the integration of trees into temperate cropping systems. Agricultural and Forest Meteorology, 323, 109065. DOI: https://doi.org/10.1016/j.agrformet.2 022.109065
Jat, H. S., Datta, A., Choudhary, M., Sharma, P. C., Yadav, A. K., Choudhary, V. & McDonald, A. (2019). Climate Smart Agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of North-West India. Catena, 181, 104059. DOI: https://doi.org/10.1016/j.catena.2019.05.005
Jat, M. L., Gathala, M. K., Ladha, J. K., Saharawat, Y. S., Jat, A. S., Kumar, V. & Gupta, R. (2009). Evaluation of precision land leveling and double zero-till systems in the rice–wheat rotation: Water use, productivity, profitability and soil physical properties. Soil and Tillage Research, 105(1), 112-121. DOI: 10.1016/j.still.2009.06.003
Jena, B. K., Barik, S. R., Moharana, A., Mohanty, S. P., Sahoo, A., Tudu, R., ... & Pradhan, S. K. (2023). Rice production and global climate change. Biomedical Journal of Scientific and Technical Research, 48(1), 39075-39095. DOI: https://dx.doi.org/10.26717/BJSTR.2023.48.007592
Kassam, A., Friedrich, T. & Derpsch, R. (2019). Global spread of conservation agriculture. International Journal of Environmental Studies, 76(1), 29-51. DOI: https://doi.org/10.1080/00207233.2018.1494927
Kassam, A., Friedrich, T., Shaxson, F., Bartz, H., Mello, I., Kienzle, J. & Pretty, J. (2014). The spread of conservation agriculture: Policy and institutional support for adoption and uptake. Field Actions Science Reports. The journal of field actions, 7. DOI: http:// factsreports.revues.org/3720
Kaur, K., Singh, G. & Aulakh, C. S. (2022). Effect of various crop establishment methods on the crop performance and water use efficiency of rice (Oryza sativa). Crop Research, 57(1and2), 15-20. DOI: http://dx.doi.org/10.31830/2454-1761.2022.003
Khan, I., Lei, H., Shah, I. A., Ali, I., Khan, I., Muhammad, I. & Javed, T. (2020). Farm households’ risk perception, attitude and adaptation strategies in dealing with climate change: Promise and perils from rural Pakistan. Land use policy, 91, 104395.
Kumar, N., Chaudhary, A., Ahlawat, O. P., Naorem, A., Upadhyay, G., Chhokar, R. S. & Singh, G. P. (2023). Crop residue management challenges, opportunities and way forward for sustainable food-energy security in India: A review. Soil and Tillage Research, 228, 105641. DOI: https://doi.org/10.1016/j.still.2023.105641
Kumar, P., Kumar, S., Mouriya, A. K. & Kumar, V. (2018). Productivity and economics of direct seeded rice. Int. J. Sci. Environ. Technol, 7, 2033-2039.
Kumar, R., Raj, M., Lal, K. & Ranjan, A. (2021). Impact of SRI Components on Growth and Productivity of Conventional Transplanted Rice. Biological Forum–An International Journal, 13(3), 196-199.
Kumar, S., Subash, N., Shivani, S., Singh, S. S. & Dey, A. (2012). Evaluation of different components under integrated farming system (IFS) for small and marginal farmers under semi-humid climatic environment. Experimental agriculture, 48(3), 399-413. DOI: https://doi. org/10.1017/S0014479712000087
Lal, B., Gautam, P., Nayak, A. K., Panda, B. B., Bihari, P., Tripathi, R. & Meena, B. P. (2019). Energy and carbon budgeting of tillage for environmentally clean and resilient soil health of rice-maize cropping system. Journal of Cleaner Production, 226, 815-830. DOI: http://doi.org/10.1016/j.jclepro.2019.04.041
Lapierre, J., Machado, P. V. F., Debruyn, Z., Brown, S. E., Jordan, S., Berg, A. & Wagner-Riddle, C. (2022). Cover crop mixtures: A powerful strategy to reduce post-harvest surplus of soil nitrate and leaching. Agriculture, Ecosystems & Environment, 325, 107750.
Leharwan, M., Kumar, Y., Kumar, R., Kumar Saraswat, P., Kumar, R., Kumar Thaliyil Veetil, A., & Kumar, S. (2023). Assessing the effects of conservation tillage and in-situ crop residue management on crop yield and soil properties in rice–wheat cropping system. Sustainability, 15(17), 12736. DOI: https://doi.org/10.3390/su151712736
Liu, C., Plaza-Bonilla, D., Coulter, J. A., Kutcher, H. R., Beckie, H. J., Wang, L. & Gan, Y. (2022). Diversifying crop rotations enhances agroecosystem services and resilience. Advances in Agronomy, 173, 299-335. DOI: https://doi.org/10.1016/bs.agron.2022.02.007
Lorenz, K.,& Lal, R. (2014). Soil organic carbon sequestration in agroforestry systems. A review. Agronomy for Sustainable Development, 34, 443-454.
Majeed, A., Muhmood, A., Niaz, A., Javid, S., Ahmad, Z. A., Shah, S. S. H. & Shah, A. H. (2015). Bed planting of wheat (Triticum aestivum L.) improves nitrogen use efficiency and grain yield compared to flat planting. The crop journal, 3(2), 118-124.
Marie, M., Yirga, F., Haile, M. & Tquabo, F. (2020). Farmers' choices and factors affecting adoption of climate change adaptation strategies: evidence from northwestern Ethiopia. Heliyon, 6(4).
Mangalassery, S., Dayal, D., Meena, S. L. & Ram, B. (2014). Carbon sequestration in agroforestry and pasture systems in arid northwestern India. Current Science, 1290-1293.
Mboyerwa, P. A., Kibret, K., Mtakwa, P. & Aschalew, A. (2022). Lowering nitrogen rates under the system of rice intensification enhanced rice productivity and nitrogen use efficiency in irrigated lowland rice. Heliyon, 8(3). DOI: https://doi.org/10.1016/j.heliyon.2022.e09140
Mboyerwa, P. A., Kibret, K., Mtakwa, P. & Aschalew, A. (2022a). Rice yield and nitrogen use efficiency with system of rice intensification and conventional management practices in mkindo irrigation scheme, Tanzania. Frontiers in Sustainable Food Systems, 6, 802267.
McDonald, A. J., Keil, A., Srivastava, A., Craufurd, P., Kishore, A., Kumar, V. & Malik, R. K. (2022). Time management governs climate resilience and productivity in the coupled rice–wheat cropping systems of eastern India. Nature Food, 3(7), 542-551.
Meena, B. L., Raja, R., Dotaniya, M. L., Nanda, G., & Meena, R. S. (2019). Integrated nutrient management for sustainable rice-based cropping systems and soil quality. Sustainable Agriculture; Meena, RS, Ed.; Scientific Publishers (India): Jodhpur, India, 1.
Meena, S. K., Dwivedi, B. S., Meena, M. C., Datta, S. P., Singh, V. K., Mishra, R. P. & Meena, V. S. (2022). Impact of Long-Term Nutrient Supply Options on Soil Aggregate Stability after Nineteen Years of Rice–Wheat Cropping System. Land, 11(9), 1465.
Mohanta, S., Banerjee, M., Malik, G. C., Shankar, T., Maitra, S., Ismail, I. A. & Hossain, A. (2021). Productivity and profitability of kharif rice are influenced by crop establishment methods and nitrogen management in the lateritic belt of the subtropical region. Agronomy, 11(7), 1280.
Mohanty, S., Nayak, A. K., Swain, C. K., Dhal, B. R., Kumar, A., Kumar, U. & Behera, K. K. (2020). Impact of integrated nutrient management options on GHG emission, N loss and N use efficiency of low land rice. Soil and Tillage Research, 200, 104616.
Mollah, M. I. U., Bhuiya, M. S. U., Hossain, M. S. & Hossain, S. M. A. (2015). Growth of wheat (Triticum aestivum L.) under raised bed planting method in rice-wheat cropping system. Bangladesh Rice Journal, 19(2), 47-56.
Mujeyi, A., Mudhara, M., & Mutenje, M. (2021). The impact of climate smart agriculture on household welfare in smallholder integrated crop–livestock farming systems: evidence from Zimbabwe. Agriculture & Food Security, 10, 1-15. DOI: https://doi.org/10.1186/s40066-020-00277-3
Nabavi-Pelesaraei, A., Rafiee, S., Mohtasebi, S. S., Hosseinzadeh-Bandbafha, H. & Chau, K. W. (2018). Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production. Science of the total environment, 631, 1279-1294. DOI: http://doi.org/10.1016/j.scitotenv.2018.03.088
Nirmala, B., Tuti, M. D., Mahender Kumar, R., Waris, A., Muthuraman, P., Parmar, B. & Vidhan Singh, T. (2021). Integrated assessment of system of rice intensification vs. conventional method of transplanting for economic benefit, energy efficiency and lower global warming potential in India. Agroecology and Sustainable Food Systems, 45(5), 745-766.
Panda, N. (2016). Back yard poultry-a viable option for poverty alleviation. Root and tuber crops based integrated farming system: A way forward to address climate change and livelihood improvement, 133.
Pangapanga, P. I., Jumbe, C. B., Kanyanda, S. & Thangalimodzi, L. (2012). Unravelling strategic choices towards droughts and floods' adaptation in Southern Malawi. International Journal of Disaster Risk Reduction, 2, 57-66.
Paramesh, V., Kumar, P., Bhagat, T., Nath, A. J., Manohara, K. K., Das, B. & Prasad, P. V. (2023a). Integrated nutrient management enhances yield, improves soil quality, and conserves energy under the lowland rice–rice cropping system. Agronomy, 13(6), 1557. DOI: https://doi.org/10.3390/agronomy13061557
Paramesh, V., Kumar, P., Parajuli, R., Francaviglia, R., Manohara, K. K., Arunachalam, V. & Toraskar, S. (2023b). A Life Cycle Assessment of Rice–Rice and Rice–Cowpea Cropping Systems in the West Coast of India. Land, 12(2), 502. DOI: https://doi.org/10.3390/land12020502
Paramesh, V., Ravisankar, N., Das, B., Reddy, K. V., & Singh, N. P. (2017). Energy Budgeting and Sensitivity Analysis of Rice (Oryza sativa)—Wheat (Triticum aestivum) Cropping System in Indogangentic Plains of India. Int. J. Curr. Microbiol. Appl. Sci., 6, 1534–1544.
Pasricha, N. S., Ghosh, P. K. & Singh, R. (2023). Agriculture-related green house gas emissions and mitigation measures. Advances in Agronomy, 179, 257-376. DOI: https://doi.org/10.1016/bs.agron.2023.01.005
Pathak, H. & Das, T. K. (2016). Climate Resilient Agronomic Practices for Rice-Wheat Cropping System of the Indo-Gangetic Plains, Indian Society of Agronomy, Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi 110 012.
Pathak, H. (2023). Impact, adaptation, and mitigation of climate change in Indian agriculture. Environmental Monitoring and Assessment, 195(1), 52.
Porwal, M. & Verma, B. (2023). Agronomic interventions for the mitigation of climate change. Emrg. Trnd. Clim. Chng., 2(1), 27-39. DOI: http://dx.doi.org/10.18782/2583-4770.122
Quandt, A., Neufeldt, H. & Gorman, K. (2023). Climate change adaptation through agroforestry: opportunities and gaps. Current Opinion in Environmental Sustainability, 60, 101244. DOI: https://doi.org/10.1016/j.cosust.2022.1 01244
Rajbonshi, M. P., Mitra, S., & Bhattacharyya, P. (2024). Agro-technologies for greenhouse gases mitigation in flooded rice fields for promoting climate smart agriculture. Environmental Pollution, 350, 123973. DOI: https://doi.org/10.1016/j.envpol.2024.123973
Raj, S. K. & Syriac, E. K. (2017). Weed management in direct seeded rice: A review. Agricultural Reviews, 38(1), 41-50. DOI: https://doi.org/10.18805/ag.v0iOF.7307
Ramesh, T. & Rathika, S. (2020). Evaluation of rice cultivation systems for greenhouse gases emission and productivity. Int. J. Ecol. Environ. Sci, 2, 49-54.
Rao, A. N. & Chandrasena, N. R. (2022). The Need for Climate-Resilient Integrated Weed Management (CRIWM) under future Climate Change. Weeds-Journal of the Asian-Pacific Weed Science Society, 4(2), 1-20.
Rastgordani, F., Oveisi, M., Mashhadi, H. R., Naeimi, M. H., Hosseini, N. M., Asadian, N. & Müller-Schärer, H. (2023). Climate change impact on herbicide efficacy: A model to predict herbicide dose in common bean under different moisture and temperature conditions. Crop Protection, 163, 106097. DOI: https://doi.org/10.1016/j.cropro.2022.106097
Rautaray, S. K. & Sucharita, S. (2024). Crop diversification for a sustainable agriculture. Indian Farming, 74(2), 19-22.
Raza, M. H., Abid, M., Faisal, M., Yan, T., Akhtar, S. & Adnan, K. M. (2022). Environmental and health impacts of crop residue burning: Scope of sustainable crop residue management practices. International Journal of Environmental Research and Public Health, 19(8), 4753. DOI: https://doi.org/10.3390/ijerph19084753.
Sánchez-Navarro, V., Shahrokh, V., Martínez-Martínez, S., Acosta, J. A., Almagro, M., Martínez-Mena, M. & Zornoza, R. (2022). Perennial alley cropping contributes to decrease soil CO2 and N2O emissions and increase soil carbon sequestration in a Mediterranean almond orchard. Science of the Total Environment, 845, 157225. DOI: https://doi.org/10.1016/j.scitotenv.2022.157225
Sapkal, S., Kamble, B. H., Kumar, P., Kar, A. & Jha, G. K. (2019). Impact of laser land levelling in rice-wheat systems of the North-Eastern indo-gangetic plains of India. Journal of Pharmacognosy and Phytochemistry, 8(1), 764-769.
Sayre, K. D. & Govaerts, B. (2009). Conservation agriculture for sustainable wheat production. Wheat facts and futures, 62-69.
Sayre, K. D., & Hobbs, P. R. (2004). The raised bed system of cultivation for irrigated production conditions. Sustainable agriculture and the international rice-wheat system (pp. 354-372). CRC press.
Scott, D. & Freckleton, R. P. (2022). Crop diversification and parasitic weed abundance: A global meta-analysis. Scientific Reports, 12(1), 19413. DOI: https://doi.org/10.1038/s41598-022-24047-2
Sekaran, U., Lai, L., Ussiri, D. A., Kumar, S. & Clay, S. (2021). Role of integrated crop-livestock systems in improving agriculture production and addressing food security–A review. Journal of Agriculture and Food Research, 5, 100190. DOI: https://doi.org/10.1016/j.jafr.2021.100190
Sharma, J., Sharma, B. C., Bharti, V., Kumar, R., Sharma, A., & Jamwal, S. (2022). Novel resource conservation technologies for increasing the production and productivity of rice-wheat cropping system in Indo-Gangetic plains of India. 235-242. DOI: http://dx.doi.org/10.5958/2582-2683.2022.00047.8
Sharma, T., Das, T. K., Maity, P. P., Biswas, S., Sudhishri, S., Govindasamy, P. & Rathi, N. (2023). Long-Term Conservation Agriculture Influences Weed Diversity, Water Productivity, Grain Yield, and Energy Budgeting of Wheat in North-Western Indo-Gangetic Plains. Sustainability, 15(9), 7290. DOI: https://doi.org/10.3390/su15097290
Siddiqui, A. O., Yazlık, A. & Jabran, K. (2022). Weed management and climate change. Building Climate Resilience in Agriculture: Theory, Practice and Future Perspective, 211-223.
Singh, V. K., Rathore, S. S., Singh, R. K., Upadhyay, P. K. & Shekhawat, K. (2020). Integrated farming system approach for enhanced farm productivity, climate resilience and doubling farmers’ income. The Indian Journal of Agricultural Sciences, 90(8), 1378-1388.
Skinner, C., Gattinger, A., Krauss, M., Krause, H. M., Mayer, J., Van Der Heijden, M. G. & Mäder, P. (2019). The impact of long-term organic farming on soil-derived greenhouse gas emissions. Scientific reports, 9(1), 1702. DOI: https://doi.org/10.1038/s41598-018-38207-w
Smith Jr, W. J., Liu, Z., Safi, A. S. & Chief, K. (2014). Climate change perception, observation and policy support in rural Nevada: A comparative analysis of Native Americans, non-native ranchers and farmers and mainstream America. Environmental Science & Policy, 42, 101-122. DOI: http://doi.org/10.1016/j.envsci.2014.03.007
Somasundaram, J., Sinha, N. K., Dalal, R. C., Lal, R., Mohanty, M., Naorem, A. K. & Chaudhari, S. K. (2020). No-till farming and conservation agriculture in South Asia–issues, challenges, prospects and benefits. Critical Reviews in Plant Sciences, 39(3), 236-279.
Steiner, J. L., Lin, X., Cavallaro, N., Basso, G. & Sassenrath, G. (2023). Climate change impacts on soil, water, and biodiversity conservation. Journal of Soil and Water Conservation, 78(2), 27A-32A. DOI: https://doi.org/10.2489/jswc.2023.0208A
Thakur, A. K., Uphoff, N. T. & Stoop, W. A. (2016). Scientific underpinnings of the System of Rice Intensification (SRI): What is known so far?. Advances in agronomy, 135, 147-179. DOI: https://doi.org/10.1016/bs.agron.2 015.09.004
Tomar, R., Singh, N. B., Singh, V. & Kumar, D. (2018). Effect of planting methods and integrated nutrient management on growth parameters, yield and economics of rice. Journal of Pharmacognosy and Phytochemistry, 7(2), 520-527.
Tripathi, S. C. & Das, A. (2017). Bed planting for resource conservation, diversification and sustainability of wheat based cropping system. Journal of Wheat Research, 9(1), 1-11.
Yadav, G. S., Babu, S., Das, A., Mohapatra, K. P., Singh, R., Avasthe, R. K. & Roy, S. (2020). No-till and mulching enhance energy use efficiency and reduce carbon footprint of a direct-seeded upland rice production system. Journal of Cleaner Production, 271, 122700. DOI: https://doi.org/10.1016/j.jclepro.2020.122700
Ziska, L. H. (2016). The role of climate change and increasing atmospheric carbon dioxide on weed management: herbicide efficacy. Agriculture, Ecosystems & Environment, 231, 304-309. DOI: https://doi.org/10.1016/j.agee.2016.07.014
Section
Research Articles

How to Cite

Sustainable agronomic practices to increase climate resilience in rice-based cropping system: A review. (2024). Journal of Applied and Natural Science, 16(4), 1530-1543. https://doi.org/10.31018/jans.v16i4.5734