##plugins.themes.bootstrap3.article.main##

Olivia Sochi Egbule Edward Ikenna Odum Obaro Levinson Oyubu Sophia Chidinma Odibe Benson Chuck Iweriebor

Abstract

Antimicrobial resistance has become a major threat to human health globally. One of the reasons for this increase is the abuse and misuse of antibiotics in the poultry industry as a growth promoter. This practice has resulted in the rise of the spread of antimicrobial resistance within the environment as poultry waste is used as manure in the growth of vegetables. With reduced enthusiasm on the part of the pharmaceutical industries to embark on developing new antimicrobial agents in the face of increasing resistance evolution, few options are available in the armamentarium to combat bacterial infections.  The study aimed to determine if domestically grown leafy vegetables and soil amended with poultry manure constitute a possible reservoir of antibiotic resistance and assessed their ability to transfer resistance via conjugation experiment. Twenty-seven leafy vegetable samples and poultry manure-enriched soils were collected from some Delta State, Nigeria farms under aseptic conditions. Standard bacteriological methods were used to isolate and identify isolates, then examined for their susceptibility to fifteen antibiotics and potential for resistance transfer via conjugation experiment. Of the 76 bacterial isolates recovered, 52 originated from vegetables, while 24 were from poultry manure-enriched soil.  Escherichia coli (14.5%) and Bacillus subtilis (7.9%) were the most prevalent isolates in vegetables and soil, respectively. The antibiotic resistance profiles of the isolates indicated very high resistance levels in Gram-negative isolates obtained from the soil to all tested antibiotics. The resistance profile of Gram-positive isolates from both vegetables and soil showed ≥ 50% resistance in tetracycline. Also, high level of resistance of between 50% to 100% was detected in Bacillus spp. and Enterococcus spp. to erythromycin, tetracycline, and chloramphenicol. Multidrug-resistant (MDR) isolates served as donor cells, while standard Escherichia coli, Pseudomonas aeruginosa, Bacillus spp. and Staphylococcus aureus served as recipient strains. The rate of antibiotic resistance transfer was generally high, particularly for tetracycline (57.1%) and chloramphenicol (61.9%). The high rate of antibiotic resistance transfer observed in this study highlights the risk of MDR spreading through poultry manure use.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Antibiotics, Bacterial isolates, Poultry manure, Resistance transfer, Soils, Vegetables

References
Abriouel, H., Omar, N.B., Molinos, A.C., López, R.L., Grande, M.J., Martínez-Viedma, P, Ortega, E.,  Cañamero, M.M. &  Galvez, A. (2008). Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. International Journal of Food Microbiology, 123, 38–49. doi: 10.1016/j.ijfoodmicro.2007.11.067.
Adesokan, H.K., Akanbi, I.O, Akanbi, I.M. & Obaweda, R.A. (2015). Pattern of antimicrobial usage in livestock animals in south western Nigeria: The need for alternative plans, Onderstepoort. Journal of Veterinary Research, 82, 816. doi: 10.4102/ojvr.v82i1.816
Aliyu, M., Halim, M., Mohamed, A.H. & Tahir, I.B.H. (2022). Adsorption tetracycline from aqueous solution using a novel polymeric adsorbent derived from the rubber waste. Journal of Taiwan Institute of Chemical Engineers, 136, 104333. DOI: 10.1016/j.jtice.2022.104333
Amri, E. & Juma, S. (2016). Evaluation of antimicrobial activity and qualitative phytochemical screening of solvent extracts of Dalbergia melanoxylon (Guill. And Perr.). International Journal of Current Microbiology and Applied Sciences, 5(7), 412–423. doi: 10.20546/ijcmas.2016.507.045. Jul
Anderson, A.C., Jonas, D., Huber, I., Karygianni, L., Wölber, J., Hellwig, E., Arweiler, N., Vach, K., Wittmer, A.,  Al-Ahmad, A.  (2016). Enterococcus faecalis from Food, Clinical Specimens, & Oral Sites: Prevalence of Virulence Factors in Association with Biofilm Formation. Frontiers in Microbiology,11: 6:1534. doi: 10.3389/fmicb.2015.01534.
Bamidele, O., Amole, T.A., Oyewale, O.A., Bamidele, O.O., Yakubu, A., Ogundu, U.E., Ajayi, F.O., Hassan, WA. (2022). Antimicrobial Usage in Smallholder Poultry Production in Nigeria. Vet Med Int. 2022:7746144. doi: 10.1155/2022/7746144.
Black, Z., Balta, I., Black, L., Naughton, P.J., Dooley, J.S.G., Corcionivoschi, N. (2021). The Fate of Foodborne Pathogens in Manure Treated Soil. Frontiers Microbiology, 12:781357. doi: 10.3389/fmicb.2021.781357
Berendonk, T.U., Manaia, C.M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., et al. (2015). Tackling antibiotic resistance: the environmental framework. Nature Review Microbiology. 13(5):310-7. doi: 10.1038/nrmicro3439.
Büdel, T., Kuenzli, E., Campos-Madueno, E.I., Mohammed, A.H., Hassan, N.K. & Zinsstag, J. (2020). On the island of Zanzibar people in the community are frequently colonized with the same MDR Enterobacterales found in poultry and retailed chicken meat. Journal of Antimicrobial Chemotherapy, 75(9),2432-2441. doi: 10.1093/jac/dkaa198.
Campos, J., Mourao, J., Pestana, N., Peixe, L., Novais, C. & Antunes, P.  (2013). Microbiological quality of ready-to-eat salads: an underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes. International Journal of Food Microbiology, 166, 464–470. 10.1016/j.ijfoodmicro.2013.08.005.
Cappacino, J.G. & Sherman, N. Editors (2013). Microbiology: A Laboratory Manual. 10th ed. Sterling Heights, MI, USA: Pearson 13–23.
Chah, J.M., Nwankwo, S.C., Uddin, I.O. & Chah, K.F. (2022). Knowledge and practices regarding antibiotic use among small-scale poultry farmers in Enugu State, Nigeria. Heliyon. 8(4),e09342. doi: 10.1016/j.heliyon.2022.e09342.
Chah K.F., Ugwu I.C., Okpala A., Adamu K.Y., Andrea C., Ceballos S., Nwanta J.N. & Torres C. (2018). Detection and molecular characterisation of extended-spectrum Beta - lactamase-producing enteric bacteria from pigs and chickens in Nsukka, Nigeria. Journal of Global Antimicrobial Resistance, 15,36-40. doi: 10.1016/j.jgar.2018.06.002.
Chajęcka-Wierzchowska, W., Zarzecka, U. & Zadernowska, A. (2021). Enterococci isolated from plant-derived food - Analysis of antibiotic resistance and the occurrence of resistance genes. LWT. 139, 110549. https://doi.org/10.1016/j.lwt.2020.110549.
Chen, Q.L., Cui, H.L., Su, J.Q., Su, J., Ma, Y. & Zhu., Y.G. (2019). Antibiotic resistomes in plant microbiomes. Trends in Plant Science.  24: 530–541. doi: 10.1016/j.tplants.2019.02.010.
Clinical and Laboratory Standards Institute (2016). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard: Clinical and Laboratory Standards Institute.M7-A6, 14th ed. Wayne, PA USA.
EARA (2020). Department of Agriculture, Nutrients Action Programme (NAP) 2019-2022. London: EARA.
Egbule, O. S. (2016). Antimicrobial Resistance and β-Lactamase Production among Hospital Dumpsite Isolates. Journal of Environmental Protection, 7 (07), 1057-1063
Egbule, O.S. (2022). Occurrence of extended spectrum beta-lactamases and sul1 in multi drug resistance Escherichia coli and Salmonella isolate from poultry feeds. Scientific Africa, 18;  e01362. https://doi.org/10.1016/j.sciaf.2022.e01362
Egbule, O.S. & Yusuf, I. (2019). Multiple Antibiotic Resistances in Escherichia coli Isolated from Cattle and Poultry Faeces in Abraka, South-South Nigeria. Tropical Agricultural Science, 42(2): 585-594.
Egbule, O.S., Iweriebor, B.C. & Edward, I.O. (2020). Beta-Lactamase-Producing Escherichia coli Isolates Recovered from Pig Handlers in Retail Shops and Abattoirs in Selected Localities in Southern Nigeria: Implications for Public Health. Implication for Public Health. Antibiotics. 10(1):9. https://doi.org/10.3390/antibiotics10010009
Esperón, F., Albero, B., Ugarte-Ruíz, M., Domínguez, L., Carballo, M., Tadeo, J. L., et al. (2020). Assessing the benefits of composting poultry manure in reducing antimicrobial residues, pathogenic bacteria, and antimicrobial resistance genes: a field-scale study. Environmental Science and Pollution Research International. 27, 27738–27749. doi: 10.1007/s11356-020-09097-1
Fang, H., Wang, H.F., Cai, L. & Yu, Y.L. (2015). Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. Environmental Science and Technology, 49, 1095–1104. doi: 10.3390/ijerph16050683
Fatoba, D. O., Abia, A. L. K., Amoako, D. G. & Essack, S. Y. (2021). Rethinking manure application: increase in multidrug-resistant enterococcus spp. in agricultural soil following chicken litter application. Microorganisms, 9:885. doi: 10.3390/microorganisms9050885
Fiedler, G., Schneider, C., Igbinosa, E.O., Kabisch, J., Brinks, E., Becker, B., Stoll, D.A., Cho, G.-S., Huch, M. & Franz, C.M.A.P (2019). Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets. BMC Microbiology, 19; 250. https://doi.org/10.1186/s12866-019-1632-2
Gay, N., Leclaire, A., Laval, M., Miltgen, G., Jégo, M., Stéphane, R., Jaubert, J., Belmonte, O. & Cardinale, E. (2016) Risk factors of extended-spectrum β-lactamase producing Enterobacteriaceae occurrence in farms in Reunion, Madagascar and Mayotte Islands 2016 2016–2017. Veterinary Science. 5,22. doi: 10.3390/vetsci5010022.
Geta K., Kibret M (2021). Knowledge, attitudes and practices of animal farm owners/workers on antibiotic use and resistance in Amhara region, north western Ethiopia. Scientific Reports. 11(1),1–13. doi: 10.1038/s41598-021-00617-8.
Gonzalez, R., Angeles, M. & Hernandez, J.C. (2017). Antibiotic and synthetic growth promoters in animal diets: review of impact and analytical methods. Food Control, 72, 255–267. 10.1016/j.foodcont.2016.03.001.
Gurmessa, B., Ashworth, A. J., Yang, Y., Savin, M., Moore, P. A., Ricke, S. C., et al. (2021). Variations in bacterial community structure and antimicrobial resistance gene abundance in cattle manure and poultry litter. Environmental Research. 197,111011. doi: 10.1016/j.envres.2021.111011
Guron, G.K.P., Arango-Argoty, G., Zhang, L., Pruden, A. & Ponder, M.A. (2019). Effects of dairy manure-based amendments and soil texture on lettuce- and radish-associated microbiota and resistomes.  MSphere 4, e239-19. doi: 10.1128/mSphere.00239-19.
Hammerum, A.M. (2012). Enterococci of animal origin and their significance for public health. Clinical Microbiology and Infection. 18(7),619-25. doi:10.1111/j.1469-0691.2012.03829. x.
Husna, A.; Rahman, M.M., Badruzzaman, A.T.M., Sikder, M.H., Islam, M.R., Rahman, M.T.,Alam, J. & Ashour, H.M. (2023). Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines 11; 2937. https://doi.org/10.3390/biomedicines11112937
Iweriebor, B. C., Egbule, O.S., Obi, L.C. (2022). The Emergence of Colistin- and Imipenem-Associated Multidrug Resistance in Escherichia Coli Isolates from Retail Meat. Polish Journal Microbiology 71(4), 519–528. doi: 10.33073/pjm-2022-046.
Johnston, L.M., Jaykus, L.A. (2004). Antimicrobial resistance of Enterococcus species isolated from produce. Applied Environmental Microbiology 70, 3133–3137. doi: 10.1128/AEM.70.5.3133-3137.2004
Khan, H.A., Ahmad, A. & Mehboob, R. (2015). Nosocomial infections and their control strategies, Asian Pacific Journal of Tropical Biomedicine, 5, 509 – 514. https://doi.org/10.1016/j.apjtb.2015.05.001
Koilybayeva, M., Shynykul, Z., Ustenova, G., Abzaliyeva, S., Alimzhanova, M. Amirkhanova, A., Turgumbayeva, A., Mustafina, K., Yeleken, G., Raganina, K., et al . (2023). Molecular Characterization of Some Bacillus Species from Vegetables and Evaluation of Their Antimicrobial and Antibiotic Potency. Molecules, 28, 3210. https://doi.org/10.3390/molecules28073210
Laconi, A., Mughini-Gras, L., Tolosi, R., Grilli, G., Trocino, A., Carraro, L., et al. (2021). Microbial community composition and antimicrobial resistance in agricultural soils fertilized with livestock manure from conventional farming in Northern Italy. Science of Total Environment. 760, 143404. doi: 10.1016/j.scitotenv.2020.143404
Levinreisman, I., Ronin, I. & Gefen, O.   (2017). Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830. doi: 10.1126/science.aaj2191
Ljubojević, D., Pelić, M., Puvača, N. & Milanov, D. (2017). Resistance to tetracycline in Escherichia coli isolates from poultry meat: epidemiology, policy and perspective. World’s Pollution Science Journal, 73: 409–417. 10.1017/S0043933917000216.
Mahmoud, M.A.M. & Abdel-Mohsein, H.S.  (2019). Hysterical tetracycline in intensive poultry farms accountable for substantial gene resistance, health and ecological risk in Egypt- manure and fish. Environmental Pollution, 255, 113039. 10.1016/j.envpol.2019.113039.
Moroni, F. J., Gascon-Aldana, P. J. & Rogiers, S. Y. (2020). Characterizing the efficacy of a film-forming anti-transpirant on raspberry foliar and fruit transpira-tion. Biology, 9(9), 255. https://doi.org/10.3390/biology9090255
Ngbede, E.O., Raj, M.A., Kwanashie, C.N. & Kwaga, J.K.P. (2017). Antimicrobial resistance and virulence profile of enterococci isolated from poultry and cattle sources in Nigeria. Tropical Animal Health and Production. 49(3),451-458. doi: 10.1007/s11250-016-1212-5.
Nsofor C.A., Olatoye I.O., Amosun E.A., Iroegbu C.U., Davis M.A., Orfe L.H. & Call D.R (2013). Escherichia coli from Nigeria exhibit a high prevalence of antibiotic resistance where reliance on antibiotics in poultry production is a potential contributing factor. African Journal Microbiological Research. 7, 4646–4654.
Nwiyi P., Chah K.F., Shoyinka S.V.O. (2018). Detection of some resistance genes in Salmonella isolated from poultry farms in Abia and Imo states, Southeastern Nigeria. Niger. Veterinary Journal. 39:124–132.
Adeyemi O.A, Fejukui, B. M. & Adeyemi, O.O. (2019). “Microbial contamination of fresh vegetable salads from food vendors in oyo metropolis,” Nigerian Journal of Pure and Applied Science. 32; no. 1.
Olonitola, O.S., Fahrenfeld, N. & Pruden, A. (2015). Antibiotic resistance profile among mesophilic aerobic bacteria in Nigerian chicken litter and associated antibiotic resistance genes. Poultry Science, 94, 867 – 874. doi: 10.3382/ps/pev069.
Omojowo, F. & Omojasola, P.F. (2013). Antibiotic Resistance Pattern of Bacterial Pathogens Isolated from Poultry Manure Used to Fertilize Fish Ponds in New Bussa, Nigeria. Albanian Journal of Agricultural Science, 12 (1), 81-85
Park, K.M., Jeong, M., Park, K.J. & Koo, M. (2018). Prevalence, Enterotoxin Genes, and Antibiotic Resistance of Bacillus Cereus Isolated from Raw Vegetables in Korea. Journal of Food Protection, 81(10), 1590-1597. https://doi.org/10.4315/0362-028X.JFP-18-205.
Pezzuto, A., Belluco, S., Losasso, C., Patuzzi, I., Bordin, P., Piovesana, A., Comin, D., Mioni, R. & Ricci, A. (2016). Effectiveness of Washing Procedures in Reducing Salmonella enterica and Listeria monocytogenes on a Raw Leafy Green Vegetable (Eruca vesicaria). Frontiers in Microbiology, 7,1663. doi: 10.3389/fmicb.2016.01663
Samtiya, M., Matthews, K.R., Dhewa, T. & Puniya, A.K. (2022). Antimicrobial Resistance in the Food Chain: Trends, Mechanisms, Pathways, and Possible Regulation Strategies. Foods.11(19),2966. doi: 10.3390/foods11192966.
Sijhary, T.J., Bermann, M.L. & Enquist, L.W. (1984). Experiment with Gene Fusions 5th Edition, Cold Spring Harbor Laboratory Press, New York, USA.
Szott, V. & Friese, A. (2021). Emission sources of Campylobacter from agricultural farms, impact on environmental contamination and intervention strategies. Current Topics in Microbiology and Immunology, 431, 103–125. doi: 10.1007/978-3-030-65481-8_5
Tan, W., Wang, J., Bai, W., Qi, J. & Chen, W. (2020). Soil bacterial diversity correlates with precipitation and soil pH in long-term maize cropping systems. Scientific Report, 10:6012. doi: 10.1038/s41598-020-62919-7
Van T. T. H., Yidana Z., Smooker P. M. & Coloe P. J. (2020). Antibiotic use in food animals worldwide, with a focus on Africa: pluses and minuses. Journal of Global Antimicrobial Resistance, 20,170–177. doi: 10.1016/j.jgar.2019.07.031.
Wang, F., Sun, R.,  Hu, H., Duan, G.,  Meng, L. & Qiao, M. (2019). The overlap of soil and vegetable microbes drives the transfer of antibiotic resistance genes from manure-amended soil to vegetables. Science of Total Environment, 1, 828:154463. doi: 10.1016/j.scitotenv.2022.154463.
Wang, F.H., Qiao, M. & Chen, Z. (2015). Antibiotic resistance genes in manure-amended soil and vegetables at harvest. Journal of Hazard Materials, 299, 215–221. doi: 10.1016/j.jhazmat.2015.05.028.
Wang, J,, Zhang, Q.,  Chu, H. & Wang, Q. (2022). Distribution and co-occurrence patterns of antibiotic resistance genes in black soils in Northeast China, Journal of Environmental Management, 1:319:115640. doi: 10.1016/j.jenvman.2022.115640.
Xu, Q. & Zhang, M (2023). Effects of Combined Pollution of Tetracycline and Sulfamethazine on Tomato Growth and Antibiotic Absorption. Agronomy, 13, 762. https://doi.org/10.3390/agronomy13030762
Zhai, Z., Cui, C., Li, X., Yan, J., Sun, E., Wang, C., Guo, H. & Hao, Y (2023). Prevalence, antimicrobial susceptibility, and antibiotic resistance gene transfer of Bacillus strains isolated from pasteurized milk, Journal of Dairy Science, 106, 1, 75-83, https://doi.org/10.3168/jds.2022-22199.
Zhang, Y.J., Hu, H.W., Gou, M., Wang, J.T., Chen, D. & He. J.Z (2017). Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environ Pollut. 231( 2),1621-1632. doi: 10.1016/j.envpol.2017.09.074.
Zhu, B., Chen, Q., Chen, S., Zhu & Y-G. (2017). Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than conventionally produced? Environ Int 98, 152–159. doi: 10.1016/j.envint.2016.11.001.
Zurfluh, K., Nüesch-Inderbinen, M., Morach, M., Zihler, B.A., Hächler, H., Stephan, R. (2015). Extended-spectrum ß-lactamase-producing-Enterobacteriaceae in vegetables imported from the Dominican Republic, India, Thailand and Vietnam. Appl Environ Microbiol. 81, 3115–3120. doi: 10.1128/AEM.00258-15.
Section
Research Articles

How to Cite

Poultry manure and vegetables as vehicles for antimicrobial resistance determinants distribution in some Farms in Delta State, Nigeria. (2024). Journal of Applied and Natural Science, 16(3), 1164-1175. https://doi.org/10.31018/jans.v16i3.5725