##plugins.themes.bootstrap3.article.main##

Guttikonda Prem Sai Subramanya Salimani Arshdeep Singh Shimpy Sarkar Sanchit Thakur Iza Fatima

Abstract

Excessive use of nitrogen fertilizers causes leaching, denitrification, runoff, and volatilization, among other issues. However, nanotechnology, which releases nutrients through nanoparticles, solves these issues. It is the most economical and successful. With the use of nanotechnology, plants can receive nutrients in a regulated way. Nutrients are essential for plants' growth and development. There are seventeen essential nutrients in all, which were divided into two groups: macronutrients and micronutrients. These were divided into three “R” concepts, i.e., right dose, right place, and right way of application. The administration of balanced nutrients is essential for the best possible growth, development, and yield from plants. The three main nutrients that plants need are N, P, and K, but overuse of fertilizers too quickly depletes soil fertility and pollutes the environment. It lessens the plants' requirement for nutrients, reduces pollution in the environment, and reduces the issues brought on by the conventional use of fertilizers. Rice is the primary energy source for 60% of the world's population. Since 2017, rice output has increased rapidly and is significant in nutrition and food security sources. The present review discusses the effect of different nutrients on the agronomic performance of rice in various studies.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Consumption and production, Food security, Life on land, Poverty, Nano N, Zinc pollution

References
Adhikari, T. & Ramana, S. (2019). Nano fertilizer: its impact on crop growth and soil health. 1-11.
Srivastava, P., Das, A., Gupta, K., Muthukumaran, M., Kurdekar, A. K., Sharma, U. & Zaman, M. I. (2023). Impact of Nano and Non-nano Fertilizers on Rice Quality and Productivity: A Review. International Journal of Environment and Climate Change, 13(8), 973-987. https://doi.org/10.9734/ijecc/2023/v13i82035
AL Aasmi, A., Li, J., Hamoud, Y. A., Lan, Y., Alordzinu, K. E., Appiah, S. A. & Yu, C. (2022). Impacts of slow-release nitrogen fertilizer rates on the morpho-physiological traits, yield, and nitrogen use efficiency of rice under different water regimes. Agriculture, 12(1), 86. https://doi.org/10.3390/agriculture12010086
Al-hashimi, A. M. (2023). A Review: Growing Rice in the Controlled Environments.  Biosciences Biotechnology Research Asia, 20(1), 13-28. http://dx.doi.org/10.13005/bbra/3064
Al-Khuzai, A. H. G. & Al-Juthery, H. W. A. (2020). Effect of DAP fertilizer source and nano fertilizers (silicon and complete) spray on some growth and yield indicators of rice (Oryza sativa L. cv. Anber 33). In IOP Conference Series: Earth and Environmental Science (Vol. 553, No. 1, p. 012008). IOP Publishing. https://doi.org/10.1088/1755-1315/553/1/012008
Alvarez, R. C. F., Prado, R. M., Souza Júnior, J. P., Oliveira, R. L. L., Felisberto, G., Deus, A. C. F. & Cruz, F. J. R. (2019). Effects of foliar spraying with new zinc sources on rice seed enrichment, nutrition, and productivity. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 69(6), 511-515. https://doi.org/10.1080/09064710.2019.1612939
Apoorva, M. R., Rao, P. C. & Padmaja, G. (2017). Effect of zinc with special reference to nano zinc carrier on yield, nutrient content, and uptake by rice (Oryza sativa L.). Int J Curr Microbiol App Sci, 6(8), 1057-1063. http://dx.doi.org/10.20546/ijcmas.2017.602.131
Arivelarasan, T., Manivasagam, V. S., Geethalakshmi, V., Bhuvaneswari, K., Natarajan, K., Balasubramanian, M., ... & Muthurajan, R. (2023). How Far Will Climate Change Affect Future Food Security? An Inquiry into the Irrigated Rice System of Peninsular India. Agriculture, 13(3), 551. https://doi.org/10.3390/agriculture13030551
Belete, F., Dechassa, N., Molla, A. & Tana, T. (2018). Effect of split application of different N rates on productivity and nitrogen use efficiency of bread wheat (Triticum aestivum L.). Agriculture & Food Security, 7, 1-10. https://doi.org/10.1186/s40066-018-0242-9
Cataldo, E., Salvi, L., Paoli, F., Fucile, M., Masciandaro, G., Manzi, D. & Mattii, G. B. (2021). Application of zeolites in agriculture and other potential uses: A review. Agronomy, 11(8), 1547. https://doi.org/10.3390/agronomy11081547
Chhipa, H. (2019). Applications of nanotechnology in agriculture. In Methods in microbiology (Vol. 46, pp. 115-142). Academic Press. https://doi.org/10.1016/bs.mim.2019.01.002
Dimkpa, C. O., Andrews, J., Fugice, J., Singh, U., Bindraban, P. S., Elmer, W. H. & White, J. C. (2020). Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Frontiers in plant science, 11, 168. https://doi.org/10.3389/fpls.2020.00168
Dou, Z., Li, Y., Guo, H., Chen, L., Jiang, J., Zhou, Y. & Zhang, H. (2021). Effects of mechanically transplanting methods and planting densities on yield and quality of Nanjing 2728 under rice-crayfish continuous production system. Agronomy, 11(3), 488. https://doi.org/10.3390/agronomy11030488
Fang, Y., Wang, L., Xin, Z., Zhao, L., An, X. & Hu, Q. (2008). Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China. Journal of agricultural and food chemistry, 56(6), 2079-2084. https://doi.org/10.1021/jf800150z
Fu, H., Cui, D. & Shen, H. (2021). Effects of nitrogen forms and application rates on nitrogen uptake, photosynthetic characteristics and yield of double-cropping rice in south China. Agronomy, 11(1), 158. https://doi.org/10.3390/agronomy11010158
Godebo T, Laekemariam F. & Loha G. (2021). Nutrient uptake, use efficiency and productivity of bread rice (Oryza sativa L.) as affected by nitrogen and potassium fertilizer in Keddida Gamela Woreda, Southern Ethiopia. Environmental Systems Research. 10(1),1-16. https://doi.org/10.1186/s40068-020-00210-4
Gush, L., Shah, S. & Gilani, F. (2021). Macronutrients and micronutrients. In A prescription for healthy living (pp. 255-273). Academic Press. https://doi.org/ 10.1016/B978-0-12-821573-9.00023-0
Islam, M. S. (2019). Sensing and uptake of nitrogen in rice plant: a molecular view. Rice Science, 26(6), 343-355. https://doi.org/10.1016/j.rsci.2018.12.007
Jiang, B., Jianlin, S. H. E. N., Minghong, S. U. N., Yajun, H. U., Jiang, W., Juan, W. A. N. G. & Jinshui, W. U. (2021). Soil phosphorus availability and rice phosphorus uptake in paddy fields under various agronomic practices. Pedosphere, 31(1), 103-115. https://doi.org/10.1016/S1002-0160(20)60053-4
Kheyri, N., Norouzi, A. H., Mobasser, H. R., & Torabi, B. (2018). Effect of different resources and methods of silicon and zinc application on agronomic traits, nutrient uptake, and grain yield of rice (Oryza sativa L.). Applied Ecology & Environmental Research, 16(5). http://dx.doi.org/10.15666/aeer/1605_57815798
Kheyri, N., Norouzi, H. A., Mobasser, H. R. & Torabi, B. (2019). Effects of silicon and zinc nanoparticles on growth, yield, and biochemical characteristics of rice. Agronomy Journal, 111(6), 3084-3090.  https://doi.org/10.2134/agronj2019.04.0304
Kumar, M., Singh, Y. K., Maurya, S. K., Maurya, S. K., Maurya, D. K., Sachan, R. & Tiwari, A. (2023). Efficient use of nano-fertilizer for increasing productivity and profitability along with maintain sustainability in rice crop: a review. International Journal of Environment and Climate Change, 13(10), 1358-1368. https://doi.org/10.9734/ijecc/2023/v13i102788
Kumar, S. A., Chhabra, V., Sreethu, S. & Kaur, G. (2022). Response of rice cultivars to conventional and nano fertilizers on yield and yield attributes in the central plain zone of Punjab. Pharm. Innovation. J, 11, 1320-1323.
Lakshman, K., Chandrakala, M., Prasad, P. S., Babu, G. P., Srinivas, T., Naik, N. R., & Korah, A. (2022). Liquid nano-urea: an emerging nano fertilizer substitute for conventional urea. Chronicle of Bioresource Management, 6(Jun, 2), 054-059.
Leghari, S. J., Wahocho, N. A., Laghari, G. M., HafeezLaghari, A., MustafaBhabhan, G., HussainTalpur, K. & Lashari, A. A. (2016). Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, 10(9), 209-219.
Lemraski, M. G., Normohamadi, G., Madani, H., Abad, H. H. S., & Mobasser, H. R. (2017). Two Iranian rice cultivars’ response to nitrogen and nano-fertilizer. Open journal of Ecology, 7(10), 591-603. https://doi.org/10.4236/oje.2017.710040  
Malhotra, H., Vandana, Sharma, S. & Pandey, R. (2018). Phosphorus nutrition: plant growth in response to deficiency and excess. Plant nutrients and abiotic stress tolerance, 171-190. https://doi.org/10.1007/978-981-10-9044-8_7
Manikandan, A. & Subramanian, K. S. (2017). Study on mitigation of ammonia volatilization loss in urea through adsorbents. Journal of Applied and Natural Science, 9(2), 688-692. https://doi.org/10.31018/jans.v9i2.1258
Manivannan, R., Sriram Chandrasekharan, M. V. & Senthil valavan, P. (2020). Nutrient uptake, nitrogen use efficiency and yield of rice as influenced by organics and fertilizer nitrogen in lowland rice soils. Plant Arch, 20, 3713-3717.
Midde, S. K., Perumal, M. S., Murugan, G., Sudhagar, R., Mattepally, V. S. & Bada, M. R. (2021). Evaluation of nano urea on growth and yield attributes of rice (Oryza Sativa L.). Chemical Science Review and Letters, 11(42), 211-214. https://doi.org/10.37273/chesci.cs205301427
Mohapatra, S., Ujjwal, A., Gurjar, T., Mishra, J., Das, T. P., Pattnaik, S. & Pradhan, J. (2023). Influence of Micronutrient Application on Nutrient Content, Uptake and Residual Soil Nutrient Status in Rice (Oryza sativa L.) in Western Uttar Pradesh Condition. International Journal of Plant & Soil Science, 35(20), 253-259. https://doi.org/10.9734/ijpss/2023/v35i203805
Mohidem, N. A., Hashim, N., Shamsudin, R. & Che Man, H. (2022). Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture, 12(6), 741. https://doi.org/10.3390/agriculture12060741
Nath, S. (2023). Phosphorus Chemistry at the Roots of Bioenergetics: Ligand Permutation as the Molecular Basis of the Mechanism of ATP Synthesis/Hydrolysis by FOF1-ATP Synthase. Molecules, 28 (22), 7486. https://doi.org/10.3390/molecules28227486
Pandey, G. K. & Mahiwal, S. (2020). Role of potassium in plants (Vol. 49). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-45953-6
Paramasivan, M., Arunkumar, V. & Senthilkumar, N. (2016). Effect of nutrient levels on productivity, profitability and soil fertility in rice (Oryza sativa) in alfisols of Tambiraparani tract. 103(1), 31-34
Preetha, P. S. & Balakrishnan, N. (2017). A review of nano fertilizers and their use and functions in soil. Int. J. Curr. Microbiol. Appl. Sci, 6(12), 3117-3133. https://doi.org/10.20546/ijcmas.2017.612.364
Rathnayaka, R. M. N. N., Mahendran, S., Iqbal, Y. B. & Rifnas, L. M. (2018). Influence of urea and nano-nitrogen fertilizers on the growth and yield of rice (Oryza sativa L.) cultivar Bg 250. International Journal of Research Publications. https://hal.science/hal-04194488
Rawat, P., Sharma, A., Shankhdhar, D., & Shankhdhar, S. C. (2022). Improvement of phosphorus uptake, phosphorus use efficiency, and grain yield of upland rice (Oryza sativa L.) in response to phosphate-solubilizing bacteria blended with phosphorus fertilizer. Pedosphere, 32(5), 752-763. https://doi.org/10.1016/j.pedsph.2022.06.005
Samart, S., & Chutipaijit, S. (2019). Growth of pigmented rice (Oryza sativa L. cv. Riceberry) exposed to ZnO nanoparticles. Materials Today: Proceedings, 17, 1987-1994. https://doi.org/10.1016/j.matpr.2019.06.246
Samui, S., Sagar, L., Sankar, T., Manohar, A., Adhikary, R., Maitra, S. & Praharaj, S. (2022). Growth and productivity of rabi maize as influenced by foliar application of urea and nano-urea. Crop Research, 57(3), 136-140. https://doi.org/10.31830/2454-1761.2022.019
Sharma, S. N., Prasad, R., Shivay, Y. S., Dwivedi, M. K., Kumar, S. & Kumar, D. (2009). Effect of rates and sources of phosphorus on productivity and economics of rice (Oryza sativa) as influenced by crop-residue incorporation. Indian Journal of Agronomy, 54(1), 42-46.
Sharma, S. & Singh, J. (2021). Split application of potassium improves yield and potassium uptake of rice under deficient soils. Journal of Soil and Water Conservation, 20(2), 213-220. https://doi.org/10.5958/2455-7145.2021.00027.8
Siddiqui, Z. A., Parveen, A., Ahmad, L. & Hashem, A. (2019). Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Scientia Horticulturae, 249, 374-382. https://doi.org/10.1016/j.scienta.2019.01.054
Singh, A., Jaswal, A. & Singh, M. (2019). Enhancing nutrients use efficiency in crops by different approaches-A review. Agricultural Reviews, 40(1), 65-69. https://doi.org/10.18805/ag. R-1815
Singh, A., Jaswal, A. & Singh, M. (2019). Impact of neem coated urea on rice yield and nutrient use efficiency (NUE). Agricultural Reviews, 40(1), 70-74. https://doi.org/10.18805/ag. R-1817
Singh, A., Kumar, A., Jaswal, A., Singh, M. & Gaikwad, D. S. (2018). Nutrient use efficiency concept and interventions for improving nitrogen use efficiency. Plant Arch, 18(1), 1015-1023.
Singh, A., Mehta, C. M., Seddique, A., Jaswal, A. & Sarkar, S. (2019). Impact of Various sources of Zinc on Growth, Production and Nutrient Uptake of Rice Crop. Think India Journal, 22(16), 1621-1634.
Sun, H., Du, W., Peng, Q., Lv, Z., Mao, H. & Kopittke, P. M. (2020). Development of ZnO nanoparticles as an efficient Zn fertilizer: Using synchrotron-based techniques and laser ablation to examine elemental distribution in wheat grain. Journal of agricultural and food chemistry, 68(18), 5068-5075. https://doi.org/10.1021/acs.jafc.0c00084
Tahir, Z., Anjum, S., Masood, A. & Ismial, T. (2023). Elemental Composition of Rice Varieties and Their Importance to Human Health. Pakistan's Multidisciplinary Journal for Arts & Science, 20-26. https://doi.org/10.5281/zenodo.10043885
Thakur, A. K., Mandal, K. G., & Raychaudhuri, S. (2020). Impact of crop and nutrient management on crop growth and yield, nutrient uptake and content in rice. Paddy and Water Environment, 18(1), 139-151. https://doi.org/10.1007/s10333-019-00770-x
Ujjwal, A., Vivek, B. P., Kumar, M. & Singh, A. (2023). Effect of doses and sources of nutrients on growth, yield, and nutrient uptake in paddy (Oryza sativa L.).  Pharma Innovation 2023, 12(5), 2519-2526.
Vadlamudi, K., Upadhyay, H., Singh, A. & Reddy, M. (2020). Influence of zinc application in plant growth: an overview. Eur. J. Mol. Clin. Med, 7(7), 2321-2327.
Velmurugan, A., Subramanil, T., Bommayasamy, N., Ramakrishna, M. K. & Swaranam, T. P. (2021). The effect of foliar application of nano urea (liquid) on rice (Oryza sativa L.). J. Andaman Sci. Assoc, 26, 76-81.
Wang, R., Mi, K., Yuan, X., Chen, J., Pu, J., Shi, X. & Zhang, H. (2023). Zinc Oxide Nanoparticles Foliar Application Effectively Enhanced Zinc and Aroma Content in Rice (Oryza sativa L.) Grains. Rice, 16(1), 36. https://doi.org/10.1186/s12284-023-00653-0
Wang, X. P., Li, Q. Q., Pei, Z. M. & Wang, S. C. (2018). Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biologia plantarum, 62, 801-808. https://doi.org/10.1007/s10535-018-0813-4
Wang, Y., Wang, F., Lu, H., Liu, Y. & Mao, C. (2021). Phosphate uptake and transport in plants: an elaborate regulatory system. Plant and Cell Physiology, 62(4), 564-572. https://doi.org/10.1093/pcp/pcab011
Yang, G., Yuan, H., Ji, H., Liu, H., Zhang, Y., Wang, G. & Guo, Z. (2021). Effect of ZnO nanoparticles on the productivity, Zn biofortification, and nutritional quality of rice in a life cycle study. Plant Physiology and Biochemistry, 163, 87-94. https://doi.org/10.1016/j.plaphy.2021.03.053
Yang, Y., Hu, H., Fu, Q., Zhu, J., Zhang, X. & Xi, R. (2020). Phosphorus regulates As uptake by rice via releasing As into soil porewater and sequestrating it on Fe plaque. Science of the Total Environment, 738, 139869. https://doi.org/10.1016/j.scitotenv.2020.139869
Yin, H., Gao, X., Stomph, T., Li, L., Zhang, F. & Zou, C. (2016). Zinc concentration in rice (Oryza sativa L.) grains and allocation in plants as affected by different zinc fertilization strategies. Communications in Soil Science and Plant Analysis, 47(6), 761-768. https://doi.org/10.1080/00103624.2016.1146891
Zhang, H., Wang, R., Chen, Z., Cui, P., Lu, H., Yang, Y. & Zhang, H. (2021). The effect of zinc oxide nanoparticles for enhancing rice (Oryza sativa L.) yield and quality. Agriculture, 11(12), 1247. https://doi.org/10.3390/agriculture11121247
Zhang, T., Sun, H., Lv, Z., Cui, L., Mao, H. & Kopittke, P. M. (2017). Using synchrotron-based approaches to examine the foliar application of ZnSO4 and ZnO nanoparticles for field-grown winter wheat. Journal of Agricultural and Food Chemistry, 66(11), 2572-2579. https://doi.org/10.1021/acs.jafc.7b04153
Section
Research Articles

How to Cite

An overview of different chemical fertilizers’ applications on the agronomic performance (growth and yield) and quality parameters of rice (Oryza sativa) crop. (2024). Journal of Applied and Natural Science, 16(3), 1363-1375. https://doi.org/10.31018/jans.v16i3.5709