Isolation, purification, and identification of catechin from Rhizophora mucronata methanol leaf extract (Bakau Kurap)
##plugins.themes.bootstrap3.article.main##
Abstract
Rhizophora mucronata (Bakau Kurap) is known as ‘Red mangrove’ growth in the coastal area of Sabah. The current investigation commenced following the behaviour of proboscis monkeys in Sabah, as they consumed mangrove leaves that were believed to contribute to their high sexual activity. The R. mucronata leaf is a natural source of flavonoid. Therefore, the present study aimed to isolate, identify and purify the active compound from R. mucronata leaf from Sabah by phytochemical screening and characterization using High-Performance Liquid Chromatography (HPLC), Evaporative Light Scattering Detector-HPLC (ELSD-HPLC) and Chromatography-Mass Spectrometry/Mass Spectrometry (LCMS/MS). Young leaves of R. mucronata collected around the coastal area of Sabah were authenticated at the Sabah Forestry Department, Sandakan, Sabah with a voucher specimen, R.mucronata (Bakau Kurap); SAN 149220. The leaves were oven-dried at 40 ± 3 °C overnight, powdered and subjected to 50% Soxhlet extraction using methanol: water. The extract was filtered, rotary evaporated and freeze-dried at 4 °C to remove excess solvent. The prepared extract was characterized by its total flavonoid, steroid and saponin contents. From HPLC analysis, the fraction collected matched with the catechin standard and Fraction F4 contained the highest catechin concentration (138.12 ppm). Further purification found that RM-F11 matched the catechin standard at the same retention time (RT) 6.8. Qualitative analysis using LCMS/MS, confirmed that the compound identified was catechin. Meanwhile, in Steroidogenesis, RM-F11 showed potent activity with the value of testosterone hormone released at 230.68 ± 11.2 pg/mL. The result indicated that the components of R. mucronata leaf of Sabah had the potential as an aphrodisiac agent.
##plugins.themes.bootstrap3.article.details##
##plugins.themes.bootstrap3.article.details##
Catechin, Chromatography-Mass Spectrometry/Mass Spectrometry, Flavonoid, High-Performance Liquid Chromatography, Rhizophora mucronata, Steroidogenesis
Ambigaipalan, P., Young, W. & Shahidi, F. (2020). Epigallocatechin (EGC)-esters as potential sources of antioxidants. Food Chemistry, 309, 125609.
Bucar, F. (2013). Natural product isolation–how to get from biological material to pure compounds. Natural Product Reports, 30(4), 525-545.
Cardoso, R. R., Neto, R.O., Dos Santos D’Almeida, C. T., Nascimento, C. T., Pressete, C.G., Martino, H. S. D., Cameron, L. C., Ferreira, M. S. L. & Barros, F. A. R. (2020). Kombuchas from green and black teas have different phenolic, impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Resources International, 128, 108782.
Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology,12(4), 564-582. https://doi.org/10.1128/CMR.12.4.564.
Fongang, Y. S., Bankeu Kezetas, J. J., Gaber, E. B., Iftikhar, A. & Lenta, N. B. (2021). Extraction of bioactive compounds from medicinal plants and herbs. Natural Medicinal Plants. 17(231); https://dx.doi.org/10.5772/intechopen.98602.
Ghosh, A., Mishra, S., Dutta, A. K. & Chowdhury, A. (2015). Pentracyclic triterpenoids and sterols from seven species of mangrove. Phytochemistry, 24(8), 1725-1727. https://dx.doi.org/10.1016/S0031-9422.
Grin (2006). Rhizophora mucronata. Information from NPGS/GRIN. Taxonomy for Plants. USDA, ARS, National Genetic Resources Program, National Germplasm Resources Laboratory, Beltsville, Maryland, USA.
Gu, C., Howell, K., Dunshea, F. R. & Suleria, H. A. R. (2019). L-E-Q/MS characterisation of phenolic acids and flavonoids in polyphenol-rich fruits and vegetables and their potential antioxidant activities. Antioxidants, 8(10), 405; https://doi:10.3390/antiox8090405.
Hecker, M., Hollert, H., Cooper, R., Vinggaard, A. M., Akahori, Y., Murphy, M. & Timm, G. (2011). The OECD validation program of the H295R steroidogenesis assay: Phase 3. Final inter-laboratory validation study. Environmental Science and Pollution Research, 18(3), 503-515.
Igelige, G., David E. A. & Adebiyi, A. (2014). Determination of Caffeine in Beverages: A Review. American Journal of Engineering Research, 3(80), 124-137.
Jairaman, C., Syed Ali, M. Y., Sivanesan, S. K., Anuradha, V., Rajagopalan, V. & Yogananath, N. (2020). HPLC characterization, acute and sub-acute toxicity evaluation of bark extract of Rhizophora mucronata in Swiss Albino mice. Heliyon, 6(2), 2405-8440; https://doi.org/10.1016/j.heliyon.2019.e03108.
Joel, E. L. & Bhimba, V. (2021). Isolation and characterization of secondary metabolites from the mangrove plant Rhizophora mucronata. Asian Pacific Tropical Medicine, 3(8), 602–604.
Khalid, S., Rejab, S., Rashid, A.H., Sulaiman, S. & Shabery, A. (2022). Pharmacological profiling of mangrove plant in coastal area of Sabah extract, Rhizophora mucronata for its aphrodisiac potential. International Journal of Science & Engineering Development Research, 7(9), 5-18.
Mahmiah, G., Nanik, S. A. & Mulyadi, T. (2016). Antioxidant activity of methanol extract from the stem bark of mangrove plant Rhizophora mucronata. Proceeding ICMHS, ISBN 978-602-60569-3-1.
Mandal, D., Sarkar, T. & Chakraborty, R. (2022). Critical review on nutritional, bioactive, and medicinal potential of spices and herbs and their application in food fortification and nanotechnology. Application Biochemistry Biotechnology, 195(2), 1319-1513; https://doi: 10.1007/s12010-022-04132-y.
OECD 456 (2011). Guidance for testing of chemicals, H295R Steroidogenesis Assay.
Padashetty, S. A. & Mishra, S. H. (2007). Effect of terpenoidal fraction of Echinops echinatus roots on reproductive parameters of male rats. Journal of Natural Medicines, 61(4), 452-457.
Pervin, M., Unno, K., Takagaki, A., Isemura, M. & Nakamura, Y. (2019). Function of green tea catechins in the brain. International Journal of Molecular, 20, 3630.
Rohini, R. M. & Das, A. K. (2009). A comparative evaluation of analgesic and anti-inflammatory activities of Rhizophora mucronata bark extracts. Pharmacologyonline, 1(2), 780-791.
Sadeer, N. B., Mahomoodally, M. F., Zengin, G., Jeewon, R., Nazurally, N., Rengasamy, K., Albuquerque, R. & Shunmugiah, K. P. (2019). Ethnopharmacology, phytochemistry, and global distribution of mangroves - A comprehensive review. Marine Drugs, 17(231); https://dx.doi:10.3390/md17040231.
Salini, G. (2015). Pharmacological profile of mangrove endophytes - A review. International Journal of Pharmacological Science, 7(1), 6-15.
Sanda, C., Corneliu, T. & Daniela, L. M. (2019). Therapeutic aspects of catechin and its derivatives – An update. ABMJ, 2(1), 21-29.
Sanderson, J. T., Boerma, J., Lansbergen, W. A. & Van, der. Berg. M. (2002). Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells. Toxicology Application Pharmacology, 182(2), 44–54.
Setyawani, A.D., Ragavan P., Basyuni, M. & Sarno, S. (2019). Rhizophora mucronata as source of foods and medicines. Bonorowo, 9(1), 42-55.
Sofowora, A. (1993). Phytochemical screening of medicinal plants and traditional medicine in Africa, Spectrum Books Ltd., Nigeria, 5(2), 150-156.
Suganthy, N. & Devi, K. P. (2016). Protective effect of catechin rich extract of Rhizophora mucronata against amyloid-induced toxicity in PC12 cells. Journal of Applied Biomedicine, 14(2), 137-146.
Sur, T. K., Bhattacharyya, D. & Hazra, A. (2015). Antiradical and antidiabetic properties of standardized extract of sunderban mangrove Rhizophora mucronata. Pharmacogn Magazine, 11(42): 389-394; https://doi10.4103/0973-1296.153094.
Teixeira, M., Souza, C. M., Menezes, A., Carmo, M., Fonteles, A. A., Gurgel, J. P. & Andrade, G. M. (2013). Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats. Pharmacology, Biochemistry and Behavior, 110, 1–7.
Xu, Y., Yu, R. M. K., Zhang, X., Murphy, M. B., Giesy, J. P., Lam, M. H. W. & Yu, H. (2006). Effects of PCBs and MeSO2–PCBs on adrenocortical steroidogenesis in H295R human adrenocortical carcinoma cells. Chemosphere 63, 772–784.
You, Q., Chen, F., Sharp, J. L., Wang, X., You, Y. R. & Zhang, C. J. (2012). High-performance liquid chromatography-mass spectrometry and evaporative light-scattering detector to compare phenolic profiles of muscadine grapes. Journal of Chromatography, 1240, 96–103.
Yu, P. L., Pu, H. F., Chen, S. Y., Wang, S. W. & Wang, P. S. (2010). Effects of catechin, epicatechin and epigallocatechin gallate on testosterone production in rat Leydig cells. Journal of Cellular Biochemistry, 110 (2), 333-342.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)