##plugins.themes.bootstrap3.article.main##

Dhanpreet Kaur Pallavi Arshdeep Singh Shimpy Sarkar Sanchit Thakur Jaspreet Kaur

Abstract

The transformation of agricultural waste into biochar that is both eco-friendly and cost-effective is not only a wise recycling strategy but also a solution to environmental pollution management. Due to its low cost, high efficiency, simplicity of use, ecological sustainability, and reliability in terms of public safety, biochar from agricultural residues can be a useful alternative technique for controlling contaminants. Biochars have achieved significant progress in the following areas: reducing greenhouse gas emissions, reducing soil nutrient dispersion, sequestering atmospheric carbon into the soil, increasing agricultural productivity, and reducing the bioavailability of environmental contaminants. A comprehensive scientific assessment of the relationship between the properties of biochars and their impact on soil properties, environmental pollutant remediation, plant growth, yield, and resistance to biotic and abiotic stresses is warranted by recent advancements in the understanding of biochars. The primary factors influencing biochar's properties are the feedstock nature, heat transfer rate, residence duration, and pyrolysis temperature. The efficacy of biochar in the management of pollutants is significantly influenced by its elemental composition, ion-exchange capacity, pore size distribution, and surface area, which are contingent upon the nature of the feedstock, preparation conditions, and procedures. The chapter investigated the potential of biochar derived from agricultural refuse as a viable alternative for the long-term application of biochar in the environment, soil conditioning, and the remediation of environmental pollutants.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Biochar, Carbon sequestration, Climate change, Greenhouse gas emissions, Life on land

References
Abdelhafez, A. A., Zhang, X., Zhou, L., Cai, M., Cui, N., Chen, G., ... & Hamed, M. H. (2021). Eco-friendly production of biochar via conventional pyrolysis: Application of biochar and liquefied smoke for plant productivity and seed germination. Environmental Technology & Innovation, 22, 101540. https://doi.org/10.1016/j.eti.2021.101540
Abukari, A., Kaba, J. S., Dawoe, E. & Abunyewa, A. A. (2022). A comprehensive review of the effects of biochar on soil physicochemical properties and crop productivity. Waste Disposal & Sustainable Energy, 4(4), 343-359. https://doi.org/10.1007/s42768-022-00114-2
Adhikari, S., Timms, W. & Mahmud, M. P. (2022). Optimising water holding capacity and hydrophobicity of biochar for soil amendment–A review. Science of The Total Environment, 851, 158043. https://doi.org/10.1016/j.scitotenv.2022.158043
Agbede, T. M., & Adekiya, A. O. (2020). Influence of biochar on soil physicochemical properties, erosion potential, and maize (Zea mays L.) grain yield under sandy soil condition. Communications in soil science and plant analysis, 51(20), 2559-2568. https://doi.org/10.1080/00103624.2020.1845348
Agegnehu, G., Srivastava, A. K. & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied soil ecology, 119, 156-170. https://doi.org/10.1016/j.apsoil.2017.06.008
Ali, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., ... & Shahzad, A. N. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environmental Science and Pollution Research, 24, 12700-12712. https://doi.org/10.1007/s11356-017-8904-x
Arif, M., Jan, T., Riaz, M., Fahad, S., Adnan, M., Amanullah, ... & Rasul, F. (2020). Biochar; a remedy for climate change. Environment, climate, plant and vegetation growth, 151-171. https://doi.org/10.1007/978-3-030-49732-3_8
Asadi, H., Ghorbani, M., Rezaei-Rashti, M., Abrishamkesh, S., Amirahmadi, E., Chengrong, C. H. E. N., & Gorji, M. (2021). Application of rice husk biochar for achieving sustainable agriculture and environment. Rice Science, 28(4), 325-343. https://doi.org/10.1016/j.rsci.2021.05.004
Ayaz, M., Feizienė, D., Tilvikienė, V., Akhtar, K., Stulpinaitė, U. & Iqbal, R. (2021). Biochar role in the sustainability of agriculture and environment. Sustainability, 13(3), 1330. https://doi.org/10.3390/su13031330
Bao, Z., Shi, C., Tu, W., Li, L., & Li, Q. (2022). Recent developments in modification of biochar and its application in soil pollution control and ecoregulation. Environmental Pollution, 313, 120184. https://doi.org/10.1016/j.envpol.2022.120184
Bilias, F., Nikoli, T., Kalderis, D. & Gasparatos, D. (2021). Towards a soil remediation strategy using biochar: Effects on soil chemical properties and bioavailability of potentially toxic elements. Toxics, 9(8), 184. https://doi.org/10.3390/toxics9080184
Brassard, P., Godbout, S., Lévesque, V., Palacios, J. H., Raghavan, V., Ahmed, A., ... & Verma, M. (2019). Biochar for soil amendment. In Char and carbon materials derived from biomass (pp. 109-146). Elsevier. https://doi.org/10.1016/B978-0-12-814893-8.00004-3
Burachevskaya, M., Minkina, T., Bauer, T., Lobzenko, I., Fedorenko, A., Mazarji, M., ... & Rajput, V. D. (2023). Fabrication of biochar derived from different types of feedstocks as an efficient adsorbent for soil heavy metal removal. Scientific Reports, 13(1), 2020 https://doi.org/10.1038/s41598-023-27638-9
Chen, S., Qi, G., Ma, G., & Zhao, X. (2020). Biochar amendment controlled bacterial wilt through changing soil chemical properties and microbial community. Microbiological Research, 231, 126373. https://doi.org/10.1016/j.micres.2019.126373
Chukwuka, K. S., Akanmu, A. O., Umukoro, O. B., Asemoloye, M. D., & Odebode, A. C. (2020). Biochar: a vital source for sustainable agriculture. Biostimulants in Plant Science, 51-74. http://dx.doi.org/10.5772/intechopen.89190
Dai, L., Lu, Q., Zhou, H., Shen, F., Liu, Z., Zhu, W., & Huang, H. (2021). Tuning oxygenated functional groups on biochar for water pollution control: A critical review. Journal of Hazardous Materials, 420, 126547. https://doi.org/10.1016/j.jhazmat.2021.126547
Das, S. K., Ghosh, G. K., & Avasthe, R. (2020). Application of biochar in agriculture and environment, and its safety issues. Biomass Conversion and Biorefinery, 1-11. https://doi.org/10.1007/s13399-020-01013-4
Das, S. K., Ghosh, G. K., & Avasthe, R. (2023). Biochar application for environmental management and toxic pollutant remediation. Biomass Conversion and Biorefinery, 13(1), 555-566. https://doi.org/10.1007/s13399-020-01078-1
Diatta, A. A., Fike, J. H., Battaglia, M. L., Galbraith, J. M., & Baig, M. B. (2020). Effects of biochar on soil fertility and crop productivity in arid regions: a review. Arabian Journal of Geosciences, 13, 1-17. https://doi.org/10.1007/s12517-020-05586-2
Duan, Y., Yang, J., Guo, Y., Wu, X., Tian, Y., Li, H., & Awasthi, M. K. (2021). Pollution control in biochar-driven clean composting: Emphasize on heavy metal passivation and gaseous emissions mitigation. Journal of Hazardous Materials, 420, 126635. https://doi.org/10.1016/j.jhazmat.2021.126635
Egamberdieva, D., Alaylar, B., Kistaubayeva, A., Wirth, S. & Bellingrath-Kimura, S. D. (2022). Biochar for improving soil biological properties and mitigating salt stress in plants on salt-affected soils. Communications in Soil Science and Plant Analysis, 53(2), 140-152. https://doi.org/10.1080/00103624.2021.1993884
Elkhlifi, Z., Iftikhar, J., Sarraf, M., Ali, B., Saleem, M. H., Ibranshahib, I., ... & Chen, Z. (2023). Potential role of biochar on capturing soil nutrients, carbon sequestration and managing environmental challenges: a review. Sustainability, 15(3), 2527. https://doi.org/10.3390/su15032527
El-Sharkawy, M., El-Naggar, A. H., Al-Huqail, A. A. & Ghoneim, A. M. (2022). Acid-modified biochar impacts on soil properties and biochemical characteristics of crops grown in saline-sodic soils. Sustainability, 14(13), 8190. https://doi.org/10.3390/su14138190
Gao, Y., Lu, Y., Lin, W., Tian, J., & Cai, K. (2019). Biochar suppresses bacterial wilt of tomato by improving soil chemical properties and shifting soil microbial community. Microorganisms, 7(12), 676. https://doi.org/10.3390/su14138190
Greco, G., Videgain, M., Di Stasi, C., González, B., & Manyà, J. J. (2018). Evolution of the mass-loss rate during atmospheric and pressurized slow pyrolysis of wheat straw in a bench-scale reactor. Journal of Analytical and Applied Pyrolysis, 136, 18-26. https://doi.org/10.1016/j.jaap.2018.11.007
Ginebra, M., Muñoz, C., Calvelo-Pereira, R., Doussoulin, M., & Zagal, E. (2022). Biochar impacts on soil chemical properties, greenhouse gas emissions and forage productivity: A field experiment. Science of The Total Environment, 806, 150465. https://doi.org/10.1016/j.scitotenv.2021.150465
Goldan, E., Nedeff, V., Barsan, N., Culea, M., Tomozei, C., Panainte-Lehadus, M. & Mosnegutu, E. (2022). Evaluation of the use of sewage sludge biochar as a soil amendment—A review. Sustainability, 14(9), 5309. https:// doi.org/10.3390/su14095309
Gupta, D. K., Gupta, C. K., Dubey, R., Fagodiya, R. K., Sharma, G., Noor Mohamed, M. B., ... & Shukla, A. K. (2020). Role of biochar in carbon sequestration and greenhouse gas mitigation. Biochar applications in agriculture and environment management, 141-165. https://doi.org/10.1007/978-3-030-40997-5_7
Gwenzi, W., Chaukura, N., Wenga, T. & Mtisi, M. (2021). Biochars as media for air pollution control systems: Contaminant removal, applications and future research directions. Science of the Total Environment, 753, 142249. https://doi.org/10.1016/j.scitotenv.2020.142249
Haider, F. U., Coulter, J. A., Liqun, C. A. I., Hussain, S., Cheema, S. A., Jun, W. U. & Zhang, R. (2022). An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere, 32(1), 107-130. https://doi.org/10.1016/S1002-0160(20)60094-7
Hale, L., Curtis, D., Azeem, M., Montgomery, J., Crowley, D. E. & McGiffen Jr, M. E. (2021). Influence of compost and biochar on soil biological properties under turfgrass supplied deficit irrigation. Applied Soil Ecology, 168, 104134. https://doi.org/10.1016/j.apsoil.2021.104134
He, M., Xiong, X., Wang, L., Hou, D., Bolan, N. S., Ok, Y. S., ... & Tsang, D. C. (2021). A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. Journal of hazardous materials, 414, 125378. https://doi.org/10.1016/j.jhazmat.2021.125378
He, M., Xu, Z., Hou, D., Gao, B., Cao, X., Ok, Y. S., ... & Tsang, D. C. (2022). Waste-derived biochar for water pollution control and sustainable development. Nature Reviews Earth & Environment, 3(7), 444-460. https://doi.org/10.1038/s43017-022-00306-8
Huang, H., Reddy, N. G., Huang, X., Chen, P., Wang, P., Zhang, Y., ... & Garg, A. (2021). Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Scientific Reports, 11(1), 7419. https://doi.org/10.1038/s41598-021-86701-5
Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., ... & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2, 421-438. https://doi.org/10.1007/s42773-020-00067-x
Jakhar, G. L., Sharma, P., Sharma, K. R., Sharma, V., Abrol, V., Sharma, M., & Sharma, N. (2019). Soil bulk density as a soil physical health indicator under different land use systems. Journal of Soil and Water Conservation, 18(4), 326-333. https://doi.org/10.5958/2455-7145.2019.00047.X
Janu, R., Mrlik, V., Ribitsch, D., Hofman, J., Sedláček, P., Bielská, L., & Soja, G. (2021). Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resources Conversion, 4, 36-46. https://doi.org/10.1016/j.crcon.2021.01.003
Jiang, Z., Lian, F., Wang, Z. & Xing, B. (2020). The role of biochars in sustainable crop production and soil resiliency. Journal of experimental botany, 71(2), 520-542. https://doi.org/10.1093/jxb/erz301
Jing, F., Chen, X., Wen, X., Liu, W., Hu, S., Yang, Z., ... & Xu, Y. (2020). Biochar effects on soil chemical properties and mobilization of cadmium (Cd) and lead (Pb) in paddy soil. Soil use and management, 36(2), 320-327. https://doi.org/10.1111/sum.12557
Kamali, M., Sweygers, N., Al-Salem, S., Appels, L., Aminabhavi, T. M., & Dewil, R. (2022). Biochar for soil applications-sustainability aspects, challenges and future prospects. Chemical Engineering Journal, 428, 131189. https://doi.org/10.1016/j.cej.2021.13118
Kang, M. W., Yibeltal, M., Kim, Y. H., Oh, S. J., Lee, J. C., Kwon, E. E., & Lee, S. S. (2022). Enhancement of soil physical properties and soil water retention with biochar-based soil amendments. Science of the Total Environment, 836, 155746. https://doi.org/10.1016/j.scitotenv.2022.155746
Kapoor, A., Sharma, R., Kumar, A., & Sepehya, S. (2022). Biochar as a means to improve soil fertility and crop productivity: a review. Journal of Plant Nutrition, 45(15), 2380-2388. https://doi.org/10.1080/01904167.2022.2027980
Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2020). Application of biochar changed the status of nutrients and biological activity in a calcareous soil. Journal of Soil Science and Plant Nutrition, 20, 450-459. https://doi.org/10.1007/s42729-019-00129-5
Khadem, A., Raiesi, F., Besharati, H., & Khalaj, M. A. (2021). The effects of biochar on soil nutrients status, microbial activity and carbon sequestration potential in two calcareous soils. Biochar, 3(1), 105-116. https://doi.org/10.1007/s42773-020-00076-w
Kizito, S., Luo, H., Lu, J., Bah, H., Dong, R., & Wu, S. (2019). Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability, 11(11), 3211. https://doi.org/10.3390/su11113211
Kurt Kara, G., Doluk, R., Civelek Yoruklu, H., Demir, A., & Ozkaya, B. (2021). Biomethane production kinetics of rumen pretreated lignocellulosic wastes. Clean Technologies and Environmental Policy, 23, 2941-2954. https://doi.org/10.1007/s10098-021-02214-9
Layek, J., Narzari, R., Hazarika, S., Das, A., Rangappa, K., Devi, S., ... & Mishra, V. K. (2022). Prospects of biochar for sustainable agriculture and carbon sequestration: an overview for Eastern Himalayas. Sustainability, 14(11), 6684. https://doi.org/10.3390/su14116684
Lehmann, J., Cowie, A., Masiello, C. A., Kammann, C., Woolf, D., Amonette, J. E., ... & Whitman, T. (2021). Biochar in climate change mitigation. Nature Geoscience, 14(12), 883-892. https://doi.org/10.1038/s41561-021-00852-8
Li, S., & Tasnady, D. (2023). Biochar for soil carbon sequestration: Current knowledge, mechanisms, and future perspectives. C, 9(3), 67. https://doi.org/10.3390/c9030067
Li, S., Harris, S., Anandhi, A., & Chen, G. (2019). Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. Journal of Cleaner Production, 215, 890-902. https://doi.org/10.1016/j.jclepro.2019.01.106
Li, S., Li, Z., Feng, X., Zhou, F., Wang, J., & Li, Y. (2021). Effects of biochar additions on the soil chemical properties, bacterial community structure and rape growth in an acid purple soil. Plant, Soil & Environment, 67(3). https://doi.org/10.17221/390/2020-PSE
Liew, Y. W., Arumugasamy, S. K., & Selvarajoo, A. (2022). Potential of biochar as soil amendment: prediction of elemental ratios from pyrolysis of agriculture biomass using artificial neural network. Water, Air, & Soil Pollution, 233(2), 54. https://doi.org/10.1007/s11270-022-05510-2
Luo, L., Wang, J., Lv, J., Liu, Z., Sun, T., Yang, Y., & Zhu, Y. G. (2023). Carbon sequestration strategies in soil using biochar: advances, challenges, and opportunities. Environmental Science & Technology, 57(31), 11357-11372. https://doi.org/10.1021/acs.est.3c02620
Ma, H., Shurigin, V., Jabborova, D., dela Cruz, J. A., dela Cruz, T. E., Wirth, S., ... & Egamberdieva, D. (2022). The integrated effect of microbial inoculants and biochar types on soil biological properties, and plant growth of lettuce (Lactuca sativa L.). Plants, 11(3), 423.  https://doi.org/10.3390/plants11030423
Majumder, S., Neogi, S., Dutta, T., Powel, M. A., & Banik, P. (2019). The impact of biochar on soil carbon sequestration: meta-analytical approach to evaluating environmental and economic advantages. Journal of environmental management, 250, 109466. https://doi.org/10.1016/j.jenvman.2019.109466
Mosharrof, M., Uddin, M. K., Jusop, S., Sulaiman, M. F., Shamsuzzaman, S. M., & Haque, A. N. A. (2021). Changes in acidic soil chemical properties and carbon dioxide emission due to biochar and lime treatments. Agriculture, 11(3), 219. https://doi.org/10.3390/agriculture11030219
Muhammad Irfan, R., Kaleri, F. N., Rizwan, M., & Mehmood, I. (2017). Potential value of biochar as a soil amendment: A review. Pure and applied biology (PAB), 6(4), 1494-1502. http://dx.doi.org/10.19045/bspab.2017.600161
Muñoz, C., Góngora, S., & Zagal, E. (2016). Use of biochar as a soil amendment: a brief review. Chilean Journal of Agricultural & Animal Sciences, 32(SPECIAL ISSUE Nº 1), 37-47. http://revistas.udec.cl/index.php/chjaas/article/view/6181
Murad, Z., Ahmad, I., Waleed, M., Hashim, S., & Bibi, S. (2022). Effect of biochar on immobilization of cadmium and soil chemical properties. Gesunde Pflanzen, 74(1), 151-158. https://doi.org/10.1007/s10343-021-00597-9
Murtaza, G., Ahmed, Z., Usman, M., Tariq, W., Ullah, Z., Shareef, M., ... & Ditta, A. (2021). Biochar induced modifications in soil properties and its impacts on crop growth and production. Journal of plant nutrition, 44(11), 1677-1691. https://doi.org/10.1080/01904167.2021.1871746
Nan, H., Mašek, O., Yang, F., Xu, X., Qiu, H., Cao, X., & Zhao, L. (2022). Minerals: A missing role for enhanced biochar carbon sequestration from the thermal conversion of biomass to the application in soil. Earth-Science Reviews, 234, 104215. https://doi.org/10.1016/j.earscirev.2022.104215
Oni, B. A., Oziegbe, O., & Olawole, O. O. (2019). Significance of biochar application to the environment and economy. Annals of Agricultural Sciences, 64(2), 222-236. https://doi.org/10.1016/j.aoas.2019.12.006
Parker, N., Agyare, W. A., Bessah, E., & Amegbletor, L. (2021). Biochar as a substitute for inorganic fertilizer: effects on soil chemical properties and maize growth in Ghana. Journal of Plant Nutrition, 44(11), 1539-1547. https://doi.org/10.1080/01904167.2020.1867577
Purakayastha, T. J., Bhaduri, D., & Singh, P. (2021). Role of biochar on greenhouse gas emissions and carbon sequestration in soil: Opportunities for mitigating climate change. Soil science: Fundamentals to recent advances, 237-260. https://doi.org/10.1007/978-981-16-0917-6_11
Rodriguez, J. A., Lustosa Filho, J. F., Melo, L. C. A., de Assis, I. R., & de Oliveira, T. S. (2020). Influence of pyrolysis temperature and feedstock on the properties of biochars produced from agricultural and industrial wastes. Journal of analytical and applied pyrolysis, 149, 104839. https://doi.org/10.1016/j.jaap.2020.104839
Rombel, A., Krasucka, P., & Oleszczuk, P. (2022). Sustainable biochar-based soil fertilizers and amendments as a new trend in biochar research. Science of the total environment, 816, 151588. https://doi.org/10.1016/j.scitotenv.2021.151588
Sarfraz, R., Hussain, A., Sabir, A., Ben Fekih, I., Ditta, A., & Xing, S. (2019). Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration—A review. Environmental monitoring and assessment, 191, 1-13. https://doi.org/10.1007/s10661-019-7400-9
Semida, W. M., Beheiry, H. R., Sétamou, M., Simpson, C. R., Abd El-Mageed, T. A., Rady, M. M., & Nelson, S. D. (2019). Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany, 127, 333-347. https://doi.org/10.1016/j.sajb.2019.11.015
Singh, H., Northup, B. K., Rice, C. W., & Prasad, P. V. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar, 4(1), 8. https://doi.org/10.1007/s42773-022-00138-1
Somerville, P. D., Farrell, C., May, P. B., & Livesley, S. J. (2020). Biochar and compost equally improve urban soil physical and biological properties and tree growth, with no added benefit in combination. Science of the Total Environment, 706, 135736. https://doi.org/10.1016/j.scitotenv.2019.135736
Song, S., Arora, S., Laserna, A. K. C., Shen, Y., Thian, B. W., Cheong, J. C., ... & Wang, C. H. (2020). Biochar for urban agriculture: Impacts on soil chemical characteristics and on Brassica rapa growth, nutrient content and metabolism over multiple growth cycles. Science of the total environment, 727, 138742. https://doi.org/10.1016/j.scitotenv.2020.138742
Sun, Y., Xiong, X., He, M., Xu, Z., Hou, D., Zhang, W., ... & Tsang, D. C. (2021). Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: a critical review. Chemical Engineering Journal, 424, 130387. https://doi.org/10.1016/j.cej.2021.130387
Sun, Z., Hu, Y., Shi, L., Li, G., Pang, Z. H. E., Liu, S., ... & Jia, B. (2022). Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant, Soil and Environment, 68(6), 272-289. https://doi.org/10.17221/522/2021-PSE
Tag, A. T., Duman, G., Ucar, S., & Yanik, J. (2016). Effects of feedstock type and pyrolysis temperature on potential applications of biochar. Journal of analytical and applied pyrolysis, 120, 200-206. https://doi.org/10.1016/j.jaap.2016.05.006
Terrón-Sánchez, J., Martín-Franco, C., Vicente, L. A., Fernández-Rodríguez, D., Albarrán, Á., Nunes, J. M. R., ... & López-Piñeiro, A. (2023). Combined use of biochar and alternative management systems for imazamox induced pollution control in rice growing environments. Journal of Environmental Management, 334, 117430. https://doi.org/10.1016/j.jenvman.2023.117430
Velli, P., Manolikaki, I. & Diamadopoulos, E. (2021). Effect of biochar produced from sewage sludge on tomato (Solanum lycopersicum L.) growth, soil chemical properties and heavy metal concentrations. Journal of Environmental Management, 297, 113325. https://doi.org/10.1016/j.jenvman.2021.113325
Vijay, V., Shreedhar, S., Adlak, K., Payyanad, S., Sreedharan, V., Gopi, G., ... & Aravind, P. V. (2021). Review of large-scale biochar field-trials for soil amendment and the observed influences on crop yield variations. Frontiers in Energy Research, 9, 710766.  https://doi.org/10.3389/fenrg.2021.710766
Vijayaraghavan, K. (2019). Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications. Environmental Technology Reviews, 8(1), 47-64. https://doi.org/10.1080/21622515.2019.1631393
Wang, L., Ok, Y. S., Tsang, D. C., Alessi, D. S., Rinklebe, J., Wang, H., ... & Hou, D. (2020). New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use and Management, 36(3), 358-386.  https://doi.org/10.1111/sum.12592
Woolf, D., Lehmann, J., Cowie, A., Cayuela, M. L., Whitman, T., & Sohi, S. (2018). Biochar for climate change mitigation. Soil and climate, 219-248. 9780429487262
Yadav, R. K., Yadav, M. R., Kumar, R., Parihar, C. M., Yadav, N., Bajiya, R., ... & Yadav, B. (2017). Role of biochar in mitigation of climate change through carbon sequestration. International Journal of Current Microbiology and Applied Sciences, 6(4), 859-866. https://doi.org/10.20546/ijcmas.2017.604.107
Yang, X., Ng, W., Wong, B. S. E., Baeg, G. H., Wang, C. H., & Ok, Y. S. (2019). Characterization and ecotoxicological investigation of biochar produced via slow pyrolysis: effect of feedstock composition and pyrolysis conditions. Journal of hazardous materials, 365, 178-185. https://doi.org/10.1016/j.jhazmat.2018.10.047
Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., ... & Gao, B. (2019). Biochar amendment improves crop production in problem soils: A review. Journal of environmental management, 232, 8-21. https://doi.org/10.1016/j.jenvman.2018.10.117
Zaheer, M. S., Ali, H. H., Soufan, W., Iqbal, R., Habib-ur-Rahman, M., Iqbal, J., ... & El Sabagh, A. (2021). Potential effects of biochar application for improving wheat (Triticum aestivum L.) growth and soil biochemical properties under drought stress conditions. Land, 10(11), 1125.  https://doi.org/10.3390/land10111125
Zhang, C., Zeng, G., Huang, D., Lai, C., Chen, M., Cheng, M., ... & Wang, R. (2019). Biochar for environmental management: Mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts. Chemical Engineering Journal, 373, 902-922. https://doi.org/10.1016/j.cej.2019.05.139
Zhang, K., Cen, R., Moavia, H., Shen, Y., Ebihara, A., Wang, G., ... & Xing, B. (2024). The role of biochar nanomaterials in the application of environmental remediation and pollution control. Chemical Engineering Journal, 152310. https://doi.org/10.1016/j.cej.2024.152310
Zhang, Y., Wang, J., & Feng, Y. (2021). The effects of biochar addition on soil physicochemical properties: A review. Catena, 202, 105284. https://doi.org/10.1016/j.catena.2021.105284
Zhao, Y., Li, X., Li, Y., Bao, H., Xing, J., Zhu, Y., ... & Xu, G. (2022). Biochar acts as an emerging soil amendment and its potential ecological risks: a review. Energies, 16(1), 410. https://doi.org/10.3390/en16010410
Zheng, Y., Han, X., Li, Y., Yang, J., Li, N., & An, N. (2019). Effects of biochar and straw application on the physicochemical and biological properties of paddy soils in northeast China. Scientific reports, 9(1), 16531. https://doi.org/10.1038/s41598-019-52978-w.
Section
Research Articles

How to Cite

Biochar: A sustainable tool for soil health, reducing greenhouse gas emissions and mitigating climate change. (2024). Journal of Applied and Natural Science, 16(3), 1049-1061. https://doi.org/10.31018/jans.v16i3.5665