Optimization of integrated nutrient management for enhancing growth and yield of wheat (Triticum aestivum) in sandy loam soil
##plugins.themes.bootstrap3.article.main##
Abstract
Wheat (Triticum aestivum) is a globally significant cereal crop with vital roles in human civilization and the agricultural revolution. The present study aimed to investigate the impact of Integrated Nutrient Management (INM) strategies on vegetative growth and yield parameters such as plant height, spike length, grains per spike, spike m-2, grain yield, biological yield, straw yield leaf area index, harvest index, and soil nutrient availability of wheat genotype PBW 590 (Triticum aestivum). The experiment was set up in randomised block design (RBD) with nine treatments in triplicates using different ratios of NPK, farm yard manure, vermicompost etc. The results indicated significant variations in plant height among the treatments (T1, T2, T3, T4, T5, T6, T7, T8 and T9) with the maximum (95.1 cm) in T4 (70% recommended dose of fertilizer + 2.5% Azospirillum + 2.5% phosphate solubilizing bacteria + 20% Farm yard manure + 5% Vermicompost), surpassing the recommended dose of fertilizer by 6.17%. Leaf Area Index positively responded to INM treatments, with T4 displaying the highest LAI (4.55), suggesting enhanced photosynthetic efficiency. Harvest Index (HI) indicated resource allocation towards edible yield, with T4 exhibiting the highest HI (50.7%) which was 34% higher than RDF. T4 consistently showed positive effects on the parameters, such as spike length (14.1 cm) and grains per spike (33), demonstrating variations among the treatments. Nutrient availability (N, P, and K) in the soil significantly improved under INM treatments, particularly T4, showcasing the potential for nutrient management in enhancing wheat growth and improving soil health.
##plugins.themes.bootstrap3.article.details##
##plugins.themes.bootstrap3.article.details##
Biological yield, Harvest Index, Integrated Nutrient Management, Nutrient availability, Wheat
Alori, E. T., Glick, B. R. & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 971. Doi: /10.3389/fmicb.2017.00971
Ahmad, A., Aslam, Z., Abbas, R. N., Bellitürk, K., Hussain, S., Hussain, S., ... & Elshikh, M. S. (2024). Enhancing Wheat Crop Resilience 9(2), 2123-2133. Doi: 10.1021/acsomega.3c04402
Arya, V. K., Singh, J., Kumar, L., Kumar, R., Kumar, P., & Chand, P. (2017). Genetic variability and diversity analysis for yield and its components in wheat (Triticum aestivum L.). Indian Journal of Agricultural Research, 51(2), 128-134. Doi: 10.18805/ijare.v0iOF.7634
Bader, B. R., Taban, S. K., Fahmi, A. H., Abood, M. A. & Hamdi, G. J. (2021). Potassium availability in soil amended with organic matter and phosphorous fertiliser under water stress during maize (Zea mays L) growth. Journal of the Saudi Society of Agricultural Sciences, 20(6), 390-394. Doi: 10.1016/j.jssas.2021.04.006
Bastakoti, R. C., Bharati, L., Bhattarai, U., & Wahid, S. M. (2017). Agriculture under changing climate conditions and adaptation options in the Koshi Basin. Climate and Development, 9(7), 634-648. Doi: 10.1080/17565529.2016.1223594
Bhardwaj, A. K., Rajwar, D., Yadav, R. K., Chaudhari, S. K., & Sharma, D. K. (2021). Nitrogen availability and use efficiency in wheat crop as influenced by the organic-input quality under major integrated nutrient management systems. Frontiers in Plant Science, 12, 634448. Doi: 10.3389/fpls.2021.634448
Bremner, J. M., & Mulvaney, C. S. (1983). Nitrogen—total. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 595-624. Doi: 10.4236/oalib.1100971
Broberg, M. C., Xu, Y., Feng, Z., & Pleijel, H. (2021). Harvest index and remobilization of 13 elements during wheat grain filling: experiences from ozone experiments in China and Sweden. Field Crops Research, 271, 108259. Doi: 10.1016/j.fcr.2021.108259
Calders, K., Origo, N., Disney, M., Nightingale, J., Woodgate, W., Armston, J., & Lewis, P. (2018). Variability and bias in active and passive ground-based measurements of effective plant, wood and leaf area index. Agricultural and Forest Meteorology, 252, 231-240. Doi:10.1016/j.agrformet.2018.01.029
Campoy, J., Campos, I., Plaza, C., Calera, M., Bodas, V., & Calera, A. (2020). Estimation of harvest index in wheat crops using a remote sensing-based approach. Field Crops Research, 256, 107910. Doi: 10.1016/j.fcr.2020.107910
Chatterjee, S., Gangopadhyay, C., Bandyopadhyay, P., Bhowmick, M. K., Roy, S. K., Majumder, A., ... & Chattopadhyay, C. (2021). Input-based assessment on integrated pest management for transplanted rice (Oryza sativa) in India. Crop Protection, 141, 105444. Doi: 10.1016/j.cropro.2020.105444
Chen, J., Engbersen, N., Stefan, L., Schmid, B., Sun, H. & Schöb, C. (2021). Diversity increases yield but reduces harvest index in crop mixtures. Nature Plants, 7(7), 893-898. Doi: 10.1038/s41477-021-00948-4
Chondie, Y. G. (2015). Effect of integrated nutrient management on wheat: A Review. Journal of Biology, Agriculture and Healthcare, 13(5), 68-76.
Darjee, S., Shrivastava, M., Langyan, S., Singh, G., Pandey, R., Sharma, A., ... & Singh, R. (2023). Integrated nutrient management reduced the nutrient losses and increased crop yield in irrigated wheat. Archives of Agronomy and Soil Science, 69(8), 1298-1309. Doi: 10.1080/03650340.2022.2084535
Devi, M., Kumar, J., Malik, D. P. & Mishra, P. (2021). Forecasting of wheat production in Haryana using hybrid time series model. Journal of Agriculture and Food Research, 5, 100175. Doi: 10.1016/j.jafr.2021.100175
Dhaliwal, S. S., Sharma, S., Sharma, V., Shukla, A. K., Walia, S. S., Alhomrani, M., ... & Hossain, A. (2021). Long-term integrated nutrient management in the maize–wheat cropping system in alluvial soils of North-Western India: Influence on soil organic carbon, microbial activity and nutrient status. Agronomy, 11(11), 2258. Doi: 10.3390/agronomy11112258
Díaz-Zorita, M. & Fernández-Canigia, M. V. (2009). Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. European Journal of Soil Biology, 45(1), 3-11. Doi:10.1016/j.ejsobi.2008.07.001
FAOSTAT (2022). Food and agriculture organization of the united nations. https://www.fao.org/faostat/en/#data/QCL
Fazily, T., Thakral, S. K. & Dhaka, A. K. (2021). Effect of integrated nutrient management on growth, yield attributes and yield of wheat. International Journal of Advances in Agricultural Science and Technology, 8(1), 106-118. Doi: 10.47856/ijaast.2021.v08i1.014
Galindo, F. S., Pagliari, P. H., Fernandes, G. C., Rodrigues, W. L., Boleta, E. H. M., Jalal, A., ... & Teixeira Filho, M. C. M. (2022). Improving sustainable field-grown wheat production with Azospirillum brasilense under tropical conditions: a potential tool for improving nitrogen management. Frontiers in Environmental Science, 10, 821628.
Gogoi, B., Borah, N., Baishya, A., Nath, D. J., Dutta, S., Das, R., ... & Petrosillo, I. (2021). Enhancing soil ecosystem services through sustainable integrated nutrient management in double rice-cropping system of North-East India. Ecological Indicators, 132, 108262. Doi:10.1016/j.ecolind.2021.108262
Hütsch, B. W., & Schubert, S. (2023). Grain yield, harvest index, water-use efficiency and nitrogen partitioning to grain can be improved by application of the plant growth regulator paclobutrazol to maize plants with reduced N supply. Journal of Agronomy and Crop Science, 209(2), 261-272. Doi:10.1111/jac.12623
Ibarra-Villarreal, A. L., Villarreal-Delgado, M. F., Parra-Cota, F. I., Yepez, E. A., Guzmán, C., Gutierrez-Coronado, M. A., ... & de Los Santos-Villalobos, S. (2023). Effect of a native bacterial consortium on growth, yield, and grain quality of durum wheat (Triticum turgidum L. subsp. durum) under different nitrogen rates in the Yaqui Valley, Mexico. Plant Signaling & Behavior, 2219837. Doi:10.1080/15592324.2023.2219837
IMD (2022). Annual report, Indian Meteorological Department (IMD), MoES, New Delhi.
IMD (2023). Annual report, Indian Meteorological Department (IMD), MoES, New Delhi.
Jackson M. L. (1967). Soil Chemical Analysis, Prentice Hall of India Private Limited., New Delhi.
Jat, L., Naresh, R. K., Bhatt, R., Chandra, M. S., Singh, S., Gupta, S. K., ... & Mattar, M. A. (2022). Wheat Nutrient Management Strategies to Increase Productivity, Profitability and Quality on Sandy Loam Soils. Agronomy, 12(11), 2807. Doi: 10.3390/agronomy12112807
Kandeler, E. (2024). Physiological and biochemical methods for studying soil biota and their functions. In Soil microbiology, Ecology and Biochemistry (pp. 193-227). Doi:10.1016/B978-0-08-047514-1.50007-X
Li, G., Tang, L., Zhang, W., Cao, W., & Zhu, Y. (2011). Effect of nitrogen rate on vertical distribution characteristics of leaf-type in wheat with different plant types. Acta Agronomica Sinica, 37(1), 127-137. Doi: 10.3724/SP.J.1006.2011.00127
Li, H., Zhu, L., Fan, R., Li, Z., Liu, Y., Shaheen, A., ... & Song, C. P. (2024). A platform for whole-genome speed introgression from Aegilops tauschii to wheat for breeding future crops. Nature Protocols, 19(2), 281-312. Doi: 10.1038/s41596-023-00922-8
Liu, W., Hou, P., Liu, G., Yang, Y., Guo, X., Ming, B., ... & Li, S. (2020). Contribution of total dry matter and harvest index to maize grain yield—A multisource data analysis. Food and Energy Security, 9(4), e256. Doi:10.1002/fes3.256
Lu, J., Li, S., Liang, G., Wu, X., Zhang, Q., Gao, C., ... & Degré, A. (2021). The contribution of microorganisms to soil organic carbon accumulation under fertilization varies among aggregate size classes. Agronomy, 11(11), 2126. Doi:10.3390/agronomy11112126
Mahmud, K., Panday, D., Mergoum, A., & Missaoui, A. (2021). Nitrogen losses and potential mitigation strategies for a sustainable agroecosystem. Sustainability, 13(4), 2400. Doi:10.3390/su13042400
Meena, B. L., Singh, A. K., Phogat, B. S., & Sharma, H. B. (2013). Effects of nutrient management and planting systems on root phenology and grain yield of wheat (Triticum aestivum). Indian Journal of Agricultural Sciences, 83(6), 627-632.
Meena, B. P., Biswas, A. K., Singh, M., Das, H., Chaudhary, R. S., Singh, A. B., ... & Patra, A. K. (2021). Energy budgeting and carbon footprint in long-term integrated nutrient management modules in a cereal-legume (Zea mays–Cicer arietinum) cropping system. Journal of Cleaner Production, 314, 127900. Doi:10.1016/j.jclepro.2021.127900
Nath, C. P., Kumar, N., Dutta, A., Hazra, K. K., Praharaj, C. S., Singh, S. S., & Das, K. (2023). Pulse crop and organic amendments in cropping system improve soil quality in rice ecology: Evidence from a long–term experiment of 16 years. Geoderma, 430, 116334. Doi:10.1016/j.geoderma.2023.116334
Nehra, A. S., Hooda, I. S. & Singh, K. P. (2001). Effect of integrated nutrient management on growth and yield of wheat (Triticum aestivum). Indian Journal of Agronomy, 46(1), 112-117.
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
Park, Y., Solhtalab, M., Thongsomboon, W. & Aristilde, L. (2022). Strategies of organic phosphorus recycling by soil bacteria: acquisition, metabolism, and regulation. Environmental Microbiology Reports, 14(1), 3-24. Doi: 10.1111/1758-2229.13040
Philippot, L., Chenu, C., Kappler, A., Rillig, M. C., & Fierer, N. (2024). The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 22(4), 226-239. Doi: 10.1038/s41579-023-00980-5
Pierce, L. L. & Running, S. W. (1988). Rapid estimation of coniferous forest leaf area index using a portable integrating radiometer. Ecology, 69(6), 1762-1767. Doi: 10.2307/1941154
Qin, X. L., Weiner, J., Qi, L., Xiong, Y. C., & Li, F. M. (2013). Allometric analysis of the effects of density on reproductive allocation and Harvest Index in 6 varieties of wheat (Triticum). Field Crops Research, 144, 162-166. Doi:10.1016/j.fcr.2012.12.011
RDF, Fertilizer Association of India, (https://agritech.tnau.ac.in/agriculture/agri_nutrientmgt_wheat.html)
Richards, L. A. (Ed.). (1954). Diagnosis and improvement of saline and alkali soils (No. 60). US Government Printing Office.
Ruiz, A., Trifunovic, S., Eudy, D. M., Sciarresi, C. S., Baum, M., Danalatos, G. J., ... & Archontoulis, S. V. (2023). Harvest index has increased over the last 50 years of maize breeding. Field Crops Research, 300, 108991. Doi:10.1016/j.fcr.2023.108991
Saito, H., Fukuta, Y., Obara, M., Tomita, A., Ishimaru, T., Sasaki, K., ... & Kobayashi, N. (2021). Two novel QTLs for the harvest index that contribute to high-yield production in rice (Oryza sativa L.). Rice, 14(1), 1-11. Doi: 10.1080/1343943X.2023.2245127
Sarwar, N., Abbas, N., Farooq, O., Akram, M., Hassan, M. W., Mubeen, K., ... & Khaliq, A. (2023). Biochar Integrated Nutrient Application Improves Crop Productivity, Sustainability and Profitability of Maize–Wheat Cropping System. Sustainability, 15(3), 2232. Doi:10.3390/su15032232
Sharma, J., Kumar, S., Kumar, N., Yadav, N., Khyalia, P. & Sharma, A. (2024a). Evaluation of yield and quality attributes of barley cultivars with foliar spray of glycine betaine under lead toxicity. Cereal Research Communications.https://doi.org/10.1007/s42976-024-00496-5
Sharma, J., Kumar, S., Kumar, V., Singh, P., Khyalia, P., Saini, S., Kumar, A & Sharma, A. (2024b). Stress-mitigating behavior of glycine betaine to enhance growth performance by suppressing the oxidative stress in Pb-stressed barley genotypes. Environmental Science and Pollution Research, 31(5), 7498-7513. Doi: 10.1007/s11356-023-31731-x
Sharma, J., Kumar, S., Kumar, V., Singh, P., Khyalia, P., Verma, S., ... & Sharma, A. (2023). Foliar application of glycine betaine to ameliorate lead toxicity in barley
plants by modulating antioxidant enzyme activity and
biochemical parameters. Environmental Research Communications. 5(7), 075002. Doi: 10.1088/2515-7620/acde38
Sharma, S., Kandel, N., Chaudhary, P., & Rai, P. (2020). A review on integrated nutrient management on wheat (triticum aestivum l.). Reviews in Food and Agriculture), 1(1), 32-37. Doi:10.26480/rfna.01.2020.32.37
Su, L., Bai, T., Qin, X., Yu, H., Wu, G., Zhao, Q., & Tan, L. (2021). Organic manure induced soil food web of microbes and nematodes drive soil organic matter under jackfruit planting. Applied Soil Ecology, 166, 103994. Doi:10.1016/j.apsoil.2021.103994
Walkley, A. & Black, I. A. (1934). An examination of the digested method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38. https://doi.org/ 10.1097/00010694-193401000-00003
Yan, G., Hu, R., Luo, J., Weiss, M., Jiang, H., Mu, X., ... & Zhang, W. (2019). Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives. Agricultural and Forest Meteorology, 265, 390-411. Doi: 10.1016/j.agrformet.2018.11.033
Yan, G., Hu, R., Wang, Y., Ren, H., Song, W., Qi, J. & Chen, L. (2016). Scale effect in indirect measurement of leaf area index. IEEE Transactions on Geoscience and Remote Sensing, 54(6), 3475-3484. Doi:10.1109/TGRS.2016.2519098
Yang, J. X., Richards, R. A., Jin, Y. & He, J. (2022). Both biomass accumulation and harvest index drive the yield improvements in soybean at high and low phosphorus in south-west China. Field Crops Research, 277, 108426. Doi:10.1016/j.fcr.2021.108426
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415-421. Doi: 10.1111/j.1365-3180.1974.tb01084.x
Zhang, H., Zhao, Q., Wang, Z., Wang, L., Li, X., Fan, Z., ... & Chen, F. (2021). Effects of nitrogen fertilizer on photosynthetic characteristics, biomass, and yield of wheat under different shading conditions. Agronomy, 11(10), 1989. Doi: 10.3390/agronomy11101989
Zhang, L., Niu, J., Lu, X., Zhao, Z., Li, K., Wang, F., ... & Sun, R. (2023). Dosage effects of organic manure on bacterial community assemblage and phosphorus transformation profiles in greenhouse soil. Frontiers in Microbiology, 14, 1188167. Doi: 10.3389/fmicb.2023.1188167
Zulfiqar, U., Ahmad, M., Valipour, M., Ishfaq, M., Maqsood, M. F., Iqbal, R., ... & El Sabagh, A. (2023). Evaluating Optimum Limited Irrigation and Integrated Nutrient Management Strategies for Wheat Growth, Yield and Quality. Hydrology, 10(3), 56. Doi: 10.3390/hydrology10030056
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)