Article Main

Divya Sharma Anita Rani Gill Poonam Bansal Soniya Goyal Pooja Sharma Moyad Shahwan Seema Ramnivas Hardeep Singh Tuli

Abstract

SARS-CoV-2 swiftly spread in Wuhan, China, leading to a pandemic crisis worldwide. Genome sequence analysis of this virus revealed a close analogy with its closely related strains, SARS-COV and MERS-COV. In the case of SARS-CoV-2, Nonstructural protein 13 (NSP13), also known as helicase, has been identified as a target for reducing the severity of infection due to its high sequence conservation and essential role in viral replication. NSP13 helicase structure in SARS-CoV-2 differs only by one amino acid from the SARS-CoV helicase structure. Targeting NSP13 with natural compounds holds significant potential for developing safe and effective antiviral therapies utilizing advanced computational approaches. The properties of 8 different natural compounds, i.e. Imidazole, Pyrrole, Tropolone, Benzotriazole, Imidazodiazepine, Phenothiazine, Acridone and Bananin were screened by applying Lipinski’s rule of five, ADME (absorption, distribution, metabolism, and excretion) properties, and Radar plots to discover their drug efficacy at a target site, safety, and absorption. Docking studies confirmed Bananin with a binding affinity of -7 kcal/mol as a potential inhibitor of NSP13 of SARS-CoV-2 with better pharmacokinetics, drug likeliness, and oral bioavailability. Based on the in silico study, it is suggested that Bananin shows promising effects against NSP13 protein, forming a maximum number of hydrogen bonds exhibiting higher binding affinity. This stronger affinity indicates a stronger interaction between the compound and its target, potentially leading to enhanced biological activity and therapeutic efficacy. This novel study has unlocked the door for a prospective SARS-CoV-2 inhibition strategy and developing antiviral interventions targeting NSP13 based on molecular docking.


 

Article Details

Article Details

Keywords

Antiviral therapies, Molecular Docking, Natural Compounds, Nonstructural proteins, SARS COV-2

References
Abdelrahman, Z., Li, M. & Wang, X. (2020). Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.552909
Amin, Md. L. (2013). P-glycoprotein Inhibition for Optimal Drug Delivery. Drug Target Insights, 7, DTI.S12519. https://doi.org/10.4137/DTI.S12519
Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. In Nature Medicine, 26 (4), 450–452. Nature Research. https://doi.org/10.1038/s41591-020-0820-9
Astuti, I. & Ysrafil. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14 (4), 407–412. https://doi.org/10.1016/j.dsx.2020.04.020
Baral, P., Bhattarai, N., Hossen, M. L., Stebliankin, V., Gerstman, B. S., Narasimhan, G. & Chapagain, P. P. (2021). Mutation-induced changes in the receptor-binding interface of the SARS-CoV-2 Delta variant B.1.617.2 and implications for immune evasion. Biochemical and Biophysical Research Communications, 574, 14–19. https://doi.org/10.1016/j.bbrc.2021.08.036
Borowski, P., Lang, M., Haag, A. & Baier, A. (2007). Tropolone and its derivatives as inhibitors of the helicase activity of hepatitis C virus nucleotide triphosphatase/helicase. Antiviral Chemistry & Chemotherapy, 18 (2), 103–109. https://doi.org/10.1177/095632020701800206
Chan, J. F. W., Kok, K. H., Zhu, Z., Chu, H., To, K. K. W., Yuan, S. & Yuen, K. Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes and Infections, 9 (1), 221–236. https://doi.org/10.1080/22221751.2020.1719902
Chen, J., Malone, B., Llewellyn, E., Grasso, M., Shelton, P. M. M., Olinares, P. D. B., Maruthi, K., Eng, E. T., Vatandaslar, H., Chait, B. T., Kapoor, T. M., Darst, S. A. & Campbell, E. A. (2020). Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex. Cell, 182 (6), 1560-1573.e13. https://doi.org/10.1016/j.cell.2020.07.033
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395 (10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
Daina, A., Michielin, O. & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
Daina, A., & Zoete, V. (2016). A BOILED‐Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem, 11 (11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
Eweas, A. F., Osman, H.-E. H., Naguib, I. A., Abourehab, M. A. S. & Abdel-Moneim, A. S. (2022). Virtual Screening of Repurposed Drugs as Potential Spike Protein Inhibitors of Different SARS-CoV-2 Variants: Molecular Docking Study. Current Issues in Molecular Biology, 44 (7), 3018–3029. https://doi.org/10.3390/cimb44070208
Fan, Y., Zhao, K., Shi, Z. L., & Zhou, P. (2019). Bat coronaviruses in China. In Viruses,11 (3). MDPI AG. https://doi.org/10.3390/v11030210
Gholap, S. S. (2016). Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. European Journal of Medicinal Chemistry, 110, 13–31. https://doi.org/10.1016/j.ejmech.2015.12.017
Ibba, R., Piras, S., Corona, P., Riu, F., Loddo, R., Delogu, I., Collu, G., Sanna, G., Caria, P., Dettori, T. & Carta, A. (2021). Synthesis, Antitumor and Antiviral In Vitro Activities of New Benzotriazole-Dicarboxamide Derivatives. Frontiers in Chemistry, 9. https://doi.org/10.3389/fchem.2021.660424
Jayaram, B., Singh, T., Mukherjee, G., Mathur, A., Shekhar, S. & Shekhar, V. (2012). Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics, 13 (S17), S7. https://doi.org/10.1186/1471-2105-13-S17-S7
Ji, D., Xu, M., Udenigwe, C. C. & Agyei, D. (2020). Physicochemical characterisation, molecular docking, and drug-likeness evaluation of hypotensive peptides encrypted in flaxseed proteome. Current Research in Food Science, 3, 41–50. https://doi.org/10.1016/j.crfs.2020.03.001
Khramtsova, E. E., Dmitriev, M. V., Bormotov, N. I., Serova, O. А., Shishkina, L. N., & Maslivets, A. N. (2021). Alkaloid-like annulated pyrano[4,3-b]pyrroles: antiviral activity and hydrolysis. Chemistry of Heterocyclic Compounds, 57 (4), 483–489. https://doi.org/10.1007/s10593-021-02928-0
Lin, J. H., & Yamazaki, M. (2003). Role of P-glycoprotein in pharmacokinetics: clinical implications. Clinical Pharmacokinetics, 42 (1), 59–98. https://doi.org/10.2165/00003088-200342010-00003
Lipinski, C. A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today. Technologies, 1 (4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395 (10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
Mostafa, A., Kandeil, A., A M M Elshaier, Y., Kutkat, O., Moatasim, Y., Rashad, A. A., Shehata, M., Gomaa, M. R., Mahrous, N., Mahmoud, S. H., GabAllah, M., Abbas, H., Taweel, A. El, Kayed, A. E., Kamel, M. N., Sayes, M. El, Mahmoud, D. B., El-Shesheny, R., Kayali, G. & Ali, M. A. (2020). FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2. Pharmaceuticals (Basel, Switzerland), 13 (12). https://doi.org/10.3390/ph13120443
Naqvi, A. A. T., Fatima, K., Mohammad, T., Fatima, U., Singh, I. K., Singh, A., Atif, S. M., Hariprasad, G., Hasan, G. M. & Hassan, M. I. (2020). Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. In Biochimica et Biophysica Acta - Molecular Basis of Disease, 1866 (10). Elsevier B.V. https://doi.org/10.1016/j.bbadis.2020.165878
Neuman, B. W., Adair, B. D., Yoshioka, C., Quispe, J. D., Orca, G., Kuhn, P., Milligan, R. A., Yeager, M. & Buchmeier, M. J. (2006). Supramolecular Architecture of Severe Acute Respiratory Syndrome Coronavirus Revealed by Electron Cryomicroscopy. Journal of Virology, 80 (16), 7918–7928. https://doi.org/10.1128/jvi.00645-06
Newman, J. A., Douangamath, A., Yadzani, S., Yosaatmadja, Y., Aimon, A., Brandão-Neto, J., Dunnett, L., Gorrie-stone, T., Skyner, R., Fearon, D., Schapira, M., von Delft, F. & Gileadi, O. (2021). Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nature Communications, 12 (1). https://doi.org/10.1038/s41467-021-25166-6
O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
Pal, M., Berhanu, G., Desalegn, C. & Kandi, V. (2020). Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus, 12 (3), e7423. https://doi.org/10.7759/cureus.7423
Perez-Lemus, G. R., Menéndez, C. A., Alvarado, W., Byléhn, F. & de Pablo, J. J. (2022). Toward wide-spectrum antivirals against coronaviruses: Molecular characterization of SARS-CoV-2 NSP13 helicase inhibitors. Science Advances, 8 (1), eabj4526. https://doi.org/10.1126/sciadv.abj4526
Rastogi, M., Pandey, N., Shukla, A. & Singh, S. K. (2020). SARS coronavirus 2: from genome to infectome. In Respiratory Research, 21 (1). BioMed Central Ltd. https://doi.org/10.1186/s12931-020-01581-z
Smith, E. C., Blanc, H., Vignuzzi, M. & Denison, M. R. (2013). Coronaviruses Lacking Exoribonuclease Activity Are Susceptible to Lethal Mutagenesis: Evidence for Proofreading and Potential Therapeutics. PLoS Pathogens, 9 (8). https://doi.org/10.1371/journal.ppat.1003565
Subissi, L., Imbert, I., Ferron, F., Collet, A., Coutard, B., Decroly, E. & Canard, B. (2014). SARS-CoV ORF1b-encoded nonstructural proteins 12-16: Replicative enzymes as antiviral targets. In Antiviral Research, 101 (1), 122–130. https://doi.org/10.1016/j.antiviral.2013.11.006
Tanner, J. A., Watt, R. M., Chai, Y. B., Lu, L. Y., Lin, M. C., Peiris, J. S. M., Poon, L. L. M., Kung, H. F. & Huang, J. D. (2003). The severe acute respiratory syndrome (SARS) coronavirus NTPasefhelicase belongs to a distinct class of 5′ to 3′ viral helicases. Journal of Biological Chemistry, 278 (41), 39578–39582. https://doi.org/10.1074/jbc.C300328200
Tanner, J. A., Zheng, B.-J., Zhou, J., Watt, R. M., Jiang, J.-Q., Wong, K.-L., Lin, Y.-P., Lu, L.-Y., He, M.-L., Kung, H.-F., Kesel, A. J. & Huang, J.-D. (2005). The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chemistry & Biology, 12 (3), 303–311. https://doi.org/10.1016/j.chembiol.2005.01.006
Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. The EMBO Journal, 1 (8), 945–951. https://doi.org/10.1002/j.1460-2075.1982.tb01276.x
Wang, Z., Huang, J.-D., Wong, K.-L., Wang, P.-G., Zhang, H.-J., Tanner, J. A., Spiga, O., Bernini, A., Zheng, B. J. & Niccolai, N. (2011). On the mechanisms of bananin activity against severe acute respiratory syndrome coronavirus. The FEBS Journal, 278 (2), 383–389. https://doi.org/10.1111/j.1742-4658.2010.07961.x
Section
Research Articles

How to Cite

Targeting NSP-13 protein of SARS CoV-2 with selected natural compounds: An in-silico approach. (2024). Journal of Applied and Natural Science, 16(2), 865-873. https://doi.org/10.31018/jans.v16i2.5647