##plugins.themes.bootstrap3.article.main##

Aarti Sharma Monika Mishra Roopa Rani Samal Vinay Singh Dagar Manoj Kumar Anupama Shukla Sarita Kumar

Abstract

Mosquitoes are the most common disease vectors for several prevalent diseases, such as Dengue, Zika, Malaria, Encephalitis, Chikungunya, and yellow fever. Since the last few years, the world has recorded an unprecedented rise in Aedes-borne dengue incidences. Frequent use of chemicals has resulted in hazardous effects on the environment, non-targets and humans, necessitating the need to develop a safer and more efficient control strategy using plant-based products. The present study investigated the effects of Cassia occidentalis on various biological parameters of the Aedes aegypti larvae. The hexane extracts obtained from the leaf and stem of the plant were utilized to treat the larvae for 24 hours. The LC50 values for the leaf and stem extracts of C. occidentalis were determined as 0.103 mg/mL and 0.088 mg/mL, respectively. The corresponding lethal values of leaf and stem extracts obtained against pupae were 0.111 and 0.138 mg/mL. The extracts also imparted latent toxic effects and reduced the % adults developed from the survived larvae in the 60.00-61.67% range at the median lethal dose. The extract-treated larvae were restless and showed abnormal behaviour, like aggressive movements and self-biting of anal papillae. The inner membrane cuticle of anal papillae was shrunken and the gut region was damaged and disintegrated. The adults who emerged from the larvae, treated with 1.0 mg/mL of C. occidentalis hexane stem and leaf extracts, showed 1.8-fold and 2.29-fold decreased oviposition, respectively. Further study with identified bioactive constituents in the extracts can help to formulate green insecticides for Ae. aegypti management.


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Aedes aegypti, Cassia occidentalis, Larvicidal, Oviposition deterrent, Pupicidal

References
Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-267. https://doi.org/10.1093/jee/18.2.265a
Afsheen, S., Shahzadi, K., Iqbal, T., Zafar, M., Saleem, R., Sayed, M.A., El-Rehim, A.A. & Ali, A.M. (2022). Achyranthes aspera–based biosynthesis of silver nanoparticles to investigate the efficacy against mosquito larvae. Biomass Conversion and Biorefinery, 1-10. https://doi.org/10.1007/s13399-022-03485-y
Al-Snafi, A. E. (2015). The therapeutic importance of Cassia occidentalis - An overview. Indian Journal of Pharmaceutical Science and Research, 5(3), 158-171.
Anibogwu, R., Jesus, K.D., Pradhan, S., Pashikanti, S., Mateen, S. & Sharma, K. (2021). Extraction, isolation and characterization of bioactive compounds from Artemisia and their biological significance: a review. Molecules, 26(22), 6995.
Arunthirumeni, M., Vinitha, G. & Shivakumar, M.S. (2023). Antifeedant and larvicidal activity of bioactive compounds isolated from entomopathogenic fungi Penicillium sp. for the control of agricultural and medically important insect pest (Spodoptera litura and Culex quinquefasciatus). Parasitology International, 92, 102688.
Baik, L.S & Carlson, J.R. (2020). The mosquito taste system and disease control. Proceedings of the National Academy of Sciences. USA, 117(52), 32848-32856. https://doi.org/10.1073/pnas.2013076117
Baz, M.M., El-Shourbagy, N.M., Alkhaibari, A.M., Gattan, H.S., Alruhaili, H., Selim, A. & Radwan, I.T. (2024). Larvicidal activity of Acacia nilotica extracts against Culex pipiens and their suggested mode of action by molecular simulation docking. Scientific Reports, 14, 6248. https://doi.org/10.1038/s41598-024-56690-2
Bibi, R., Tariq, R.M. & Rasheed, M. (2020). Toxic assessment, growth disrupting and neurotoxic effects of red seaweeds’ botanicals against the dengue vector mosquito Aedes aegypti L. Ecotoxicology and Environmental Safety, 195, 110451.
Borase, H.P., Patil, C.D., Salunkhe, R.B., Narkhede, C.P., Salunke, B.K. & Patil, S.V. (2013). Phyto-synthesized silver nanoparticles: a potent mosquito biolarvicidal agent. Journal of Nanomedicine and Biotherapeutic Discovery, 3(1), 1-7. https://doi.org/ 10.4172/2155-983X.1000111
Bukar, A. & Zainab, T. (2019). Plant extracts as a source of bio-insecticide for mosquito control, review. International Journal of Mosquito Research, 6(6), 81-84.
Chaithong, U., Choochote, W., Kamsuk, K., Jitpakdi, A., Tippawangkosol, P., Chaiyasit, D., Champakaew, D.,
Tuetun, B. & Pitasawat, B. (2006). Larvicidal effect of pepper plants on Aedes aegypti (L.) (Diptera: Culicidae). Journal of Vector Ecology, 31(1), 138 - 144. https://
doi.org/10.3376/1081-1710(2006)31[138:LEOPPO]2.0.C O;2
Choudhary, S., Zehra, A., Mukarram, M., Wani, K.I., Naeem, M., Hakeem, K.R. & Aftab, T. (2021). Potential uses of bioactive compounds of medicinal plants and their mode of action in several human diseases. In: Aftab, T. & Hakeem, K.R. (eds) Medicinal and Aromatic Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-58975-2_5Medicinal and Aromatic Plants: Healthcare and Industrial Applications, 143-158.
Demirak, M.Ş. & Canpolat, E. (2022). Plant-based bioinsecticides for mosquito control: impact on insecticide resistance and disease transmission. Insects, 13(2),162.
Dey, P., Goyary, D., Chattopadhyay, P., Kishor, S., Karmakar, S. & Verma, A. (2020). Evaluation of larvicidal activity of Piper longum leaf against the dengue vector, Aedes aegypti, malarial vector, Anopheles stephensi and filariasis vector, Culex quinquefasciatus. South African Journal of Botany, 132, 482-490.
Dhandapani, A. & Kadarkarai, M. (2011). HPTLC quantification of flavonoids, larvicidal and smoke repellent activities of Cassia occidentalis L. (Caesalpiniaceae) against malarial vector Anopheles stephensi Lis (Diptera: Culicidae). Journal of Phytology, 3(2), 60-72.
Ejeta, D., Asme, A. & Asefa, A. (2021). Insecticidal effect of ethnobotanical plant extracts against Anopheles arabiensis under laboratory conditions. Malaria Journal, 20, 1-8.
El Hag, E.A., El Nadi, A.H. &, Zaitoon, A.A. (1999). Toxic and growth retarding effects of three plant extracts on Culex pipiens larvae (Diptera: Culicidae). Phytotherapy Research, 13(5), 388-392. https://doi.org/10.1002/(SICI)1099-1573(199908/09)13:5<388::AID-PTR455>3.0.CO;2-U
Elango, G., Bagavan, A., Kamaraj, C., Abduz, Z.A. & Abdul, R.A. (2009). Oviposition-deterrent, ovicidal, and repellent activities of indigenous plant extracts against Anopheles subpictus Grassi (Diptera: Culicidae). Parasitology Research, 105(6), 1567-1576. https://doi.org/10.1007/s00436-009-1593-8
Ganesan, P., Samuel, R., Mutheeswaran, S., Pandikumar, P., Reegan, A.D., Aremu, A.O. & Ignacimuthu, S. (2023). Phytocompounds for mosquito larvicidal activity and their modes of action: a review. South African Journal of Botany, 152, 19-49.
Hillary, V.E., Ceasar, S.A. & Ignacimuthu, S. (2024). Efficacy of plant products in controlling disease vector mosquitoes, a review. Entomologia Experimentalis et Applicata, 172(3), 195-214.
Ilahi, I., Yousafzai, A.M., Haq, T.U., Ali, H., Rahim, A., Sajad, M.A., Khan, A.N., Ahmad, A., Ullah, S., Zaman, S. & Bibi, A. (2019). Oviposition deterrence and adult emergence inhibition activities of Cymbopogon nardus against Culex quinquefasciatus with study on non-target organisms. Applied Ecology and Environmental Research, 117, 4915-4931. https://doi.org/10.15666/aeer/1702_49154931
Kabir, K.E., Choudhary, M.I., Ahmed, S. & Tariq, R.M. (2013). Growth-disrupting, larvicidal and neurobehavioral toxicity effects of seed extract of Seseli diffusum against Aedes aegypti (L.) (Diptera: Culicidae). Ecotoxicology and Environmental Safety, 90, 52-60. https://doi.org/10.1016/j.ecoenv.2012.12.028
Kabir, K.E., Tariq, R.M., Ahmed, S. & Choudhary, M.I. (2011). A potent larvicidal and growth disruption activities of Apium graveolens (Apiaceae) seed extract on the dengue fever mosquito, Aedes aegypti (Diptera: Culicidae). Higher Education Commission, 20(20), 1-8.
Koomson, C.K., Owusu-Fordjour, C. & Darku, A. (2022). Larvicidal and pupicidal potential of Alchornea cordifolia (Schum. & thonn.) leaf extract against the malaria vector Anopheles gambiae (Diptera: Culicidae). International Journal of Mosquito Research, 9(1), 56-60. https://doi.org/10.22271/23487941.2022.v9.i1a.581
Kumar, A. & Arya, H., (2022). Phytochemical analysis and synergistic larvicidal action of Argemone mexicana against third instar larvae of Aedes aegypti (Diptera: Culicidae). Journal of Science Innovations and Nature of Earth,https://papers.ssrn.com/sol3/papers.cfm abstract_id = 4343951
Kumar, S., Warikoo, R. & Wahab, N. (2010). Larvicidal potential of ethanolic extracts of dried fruits of three species of peppercorns against different instars of an Indian strain of dengue fever mosquito, Aedes aegypti L. (Diptera: Culicidae). Parasitology Research, 107(4), 901-907.  https://doi.org/10.1007/s00436-010-1948-1
Muhammad, A., Abdullahi, N., Yunusa, A. Y., Shehu, S. A., Yola, A. I., Sulaiman, T., & Umar, A. B. (2024). Effects of Combretum micranthum, Xienmia americana and Aloysia citrodora leaf extracts against oviposition and egg viability of Anopheles gambiae s.l. (Diptera: Culicidae). Sahel Journal of Life Sciences FUDMA, 2(1), 17–22. https://doi.org/10.33003/sajols-2024-0201-003
Panneerselvam, C., Murugan, K., Kovendan, K., Kumar, P.M., Ponarulselvam, S., Amerasan, D., Subramaniam, J. & Hwang, J.S. (2013). Larvicidal efficacy of Catharanthus occidentalis Linn. (Family: Apocynaceae) leaf extract and bacterial insecticide Bacillus thuringiensis against Anopheles stephensi Liston. Asian Pacific Journal of Tropical Medicine, 6(11), 847-853. https://doi.org/10.1016/S1995-7645(13)60151-0
Rajkumar, S. & Jebanesan, A. (2009). Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitology Research, 104(2), 337-340. https://doi.org/10.1007/s00436-008-1197-8
Remia, K.M. and & Logaswamy, S. (2010). Larvicidal efficacy of leaf extract of two botanicals against the mosquito vector Aedes aegypti (Diptera: Culicidae). Indian Journal of Natural Product Resources, 1(2), 208-212. https://doi.org/ nopr.niscpr.res.in/handle/123456789/9833
Shaalan, E.A., Canyon, D., Younes, M.W., Abdel-Wahab, H. & Mansour, A.H. (2005). A review of botanical phytochemicals with mosquitocidal potential. Environment. International, 31(8), 1149-1166. https://doi.org/10.1016/j.envint.2005.03.003
Sharma, A., Kumar, S. & Tripathi, P. (2015). Impact of Achyranthes aspera leaf and stem extracts on the survival, morphology and behaviour of an Indian strain of dengue vector, Aedes aegypti L. (Diptera: Culicidae). Journal of Mosquito Research, 5(7), 1-9. https://dx.doi.org/10.5376/jmr.2015.05.0007
Sharma, A., Kumar, S. & Tripathi, P. (2016). Evaluation of the larvicidal efficacy of five indigenous weeds against an Indian strain of dengue vector, Aedes aegypti L. (Diptera: Culicidae). Journal of Parasitology Research, 2016, 1-8. https://doi.org/10.1155/2016/2857089
Singh, A. & Chandra, G. (2022). Larvicidal, pupicidal, repellence and smoke toxic efficacies of Nicotiana plumbaginifolia leaves against Culex vishnui mosquito. International. Journal of Tropical Insect Science, 42(2), 1187-1195. https://doi.org/ 10.1007/s42690-021-00636-y
Spinozzi, E., Maggi, F., Bonacucina, G., Pavela, R., Boukouvala, M.C., Kavallieratos, N.G., Canale, A., Romano, D., Desneux, N., Wilke, A.B. & Beier, J.C. (2021). Apiaceae essential oils and their constituents as insecticides against mosquitoes – a review. Industrial Crops and Products, 171, 113892.
Sukumar, K., Perich, M.J. & Boobar, L.R. (1991). Botanical derivatives in mosquito control: a review. Journal of American Mosquito Control Association Supplementary, 7(2), 210-237.
Tona, L., Mesia, K., Ngimbi, N.P., Chrimwami, B., Okond'ahoka, C.K., de Bruyne, T., Apers, S., Hermans, N., Totte, J., Pieters, L. & Vlietinck, A.J. (2001). In-vivo antimalarial activity of Cassia occidentalis, Morinda morindoides and Phyllanthus niruri. Annals of Tropical Medicine and Parasitology, 95(1), 47-57.
Tona, L., Ngimbi, N.P., Tsakala, M., Mesia, K., Cimanga, K. & Apers, S. (1999). Antimalarial activity of 20 crude extracts from nine African medicinal plants used in Kinshasa Congo. Journal of Ethnopharmacology, 68,193-203.
Vairavan, S., Thangapandiyan, S. & Alisha, A.A. (2018) Larvicidal efficacy of Catharanthus occidentalis leaf extracts against the filarial vector Culex quinquefasciatus (Diptera: Culicidae). International Journal of Pharmaceutical Sciences Review and Research, 51(1), 19-25.
Vashishtha, V. M., John, T. J. & Kumar, A. (2009). Clinical and pathological features of acute toxicity due to Cassia occidentalis in vertebrates. Indian Journal of Medical Research, 130(1), 23–30.
Warikoo, R. & Kumar, S. (2013). Impact of Argemone mexicana extracts on the cidal, morphological, and behavioral response of dengue vector, Aedes aegypti L. (Diptera: Culicidae). Parasitology Research, 112(10), 3477-3484. https://doi.org/10.1007/s00436-013-3528-7
Warikoo, R. & Kumar, S. (2014a). Impact of the Argemone mexicana stem extracts on the reproductive fitness and behavior of adult dengue vector, Aedes aegypti L. (Diptera: Culicidae). International Journal of Insect Science, 6, IJIS-S19006. https://doi.org/10.4137/IJIS.S19006
Warikoo, R. & Kumar, S. (2014b). Oviposition altering and ovicidal efficacy of root extracts of Argemone mexicana against dengue vector, Aedes aegypti (Diptera: Culicidae). Journal of Entomology and Zoology Studies, 2(4), 11-17.
WHO (World Health Organization) (2016) Monitoring and managing insecticide resistance in Aedes mosquito populations. http://apps.who.int/iris/bitstream/ handle/ 10665/ 204588/WHO_ZIKV_VC_16.1_eng.pdf?sequence=2
WHO (World Health Organization) (2020). Dengue and severe dengue. www.who.int/news-room/fact-sheets/det ail/dengue-and-severe-dengue
Section
Research Articles

How to Cite

Influence of Cassia occidentalis leaf and stem extracts on the life parameters of Aedes aegypti (Linnaeus, 1762). (2024). Journal of Applied and Natural Science, 16(2), 752-761. https://doi.org/10.31018/jans.v16i2.5642