Novel class of antimicrobials from the marine isolates of actinomycetes and their potential screening against multidrug-resistant bacterial strains
##plugins.themes.bootstrap3.article.main##
Abstract
Microbial pathogenesis contributes a significant proportion to the global human mortality rate. Further, the outbreak of
antimicrobial-resistant strains represents an alarming threat to human and animal healthcare, which drives scientific research on searching for novel antimicrobials. The present study is one such initiative to isolate new classes of antibiotics from the
marine actinomycetes to combat the perpetual increase of multidrug-resistant strains. The soil samples from Tamil Nadu, India's coastal regions, were collected, and eight isolates of the actinomycete species (S1, S1b, S2, S3, S4b, S4W, S4R, S5) were recovered. From their 16S rRNA sequencing, the isolates belonged to Streptomyces sp.; the phylogenetic tree was constructed through the neighbour-joining method. Further, the secondary metabolites of all the isolates were screened against ATCC strains, Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 25927) and Acinetobacter baumanni (ATCC 19606) and multidrug-resistant (MDR) strains, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecalis (VRE), carbapenem-resistant Klebsiella pneumonia (OXA) and colistin-cephalosporin resistant Escherichia coli (MCR). Of the eight isolates, S1b and S3 showed good inhibition for all the strains tested and their genomic sequences were sequenced and submitted to Genbank, MK641472 (S1b) & MK641473 (S3). Conclusively, their metabolites were purified using LC-MS and no resemblances were found with standard classes of antimicrobials such as nitrofurans, sulfonamides, fluoroquinolones, tetracyclines, chloramphenicols or ivermectins, which suggests that these metabolites are novel and could be exploited for the prospective antimicrobial research.
##plugins.themes.bootstrap3.article.details##
##plugins.themes.bootstrap3.article.details##
Liquid chromatography-mass spectrometry, Marine actinomycetes, Multi-Drug Resistance, Novel antimicrobials, 16S rRNA
Baquero, F., Martinez, J. L., F. Lanza, V., Rodríguez-Beltrán, J., Galán, J. C., San Millán, A., Cantón, R. & Coque, T. M. (2021). Evolutionary pathways and trajectories in antibiotic resistance. Clinical Microbiology Reviews, 34(4), e00050-19. https://doi.org/10.1128/CMR.00050-19.
Chaudhary, H. S., Yadav, J., Shrivastava, A. R., Singh, S., Singh, A. K. & Gopalan, N. (2013). Antibacterial activity of actinomycetes isolated from different soil samples of Sheopur (A city of central India). Journal of Advanced Pharmaceutical Technology & Research, 4(2), 118. https://doi.org/10.4103/2231-4040.111528.
Dhanasekaran, D., Selvamani, S., Panneerselvam, A. & Thajuddin, N. (2009). Isolation and characterization of actinomycetes in Vellar estuary, Annagkoil, Tamil Nadu. African Journal of Biotechnology, 8(17).
Durão, P., Balbontín, R. & Gordo, I. (2018). Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends in Microbiology, 26(8), 677-691. https://doi.org/10.1016/j.tim.2018.01.005.
Feng, S., Wu, Z., Liang, W., Zhang, X., Cai, X., Li, J., Liang, L., Lin, D., Stoesser, N., Doi, Y., Zhong, L., Liu, Y., Xia, Y., Dai, M., Zhang, L., Chen, X., Yang, J. & Tian, G. (2022). Prediction of antibiotic resistance evolution by growth measurement of all proximal mutants of Beta-Lactamase. Molecular Biology and Evolution, 39(5). https://doi.org/10.1093/molbev/msac086
Hadjadj, L., Baron, S. A., Diene, S. M. & Rolain, J. M. (2019). How to discover new antibiotic resistance genes?. Expert Review of Molecular Diagnostics, 19(4), 349-362. https://doi.org/10.1080/14737159.2019.1592678.
Hanshew, A. S., McDonald, B. R., Díaz Díaz, C., Djiéto-Lordon, C., Blatrix, R. & Currie, C. R. (2015). Characterization of actinobacteria associated with three ant–plant mutualisms. Microbial Ecology, 69, 192-203.
Harir, M., Bellahcene, M., Fortas, Z., García-Arenzana, J. M., Veloso, A. & Rodríguez‐Couto, S. (2017). Isolation and Characterization of Actinobacteria from Algerian Sahara Soils with Antimicrobial Activities. PubMed, 6(2), 109–120. https://doi.org/10.22088/acadpub.bums.6.2.5.
Janaki, T., Nayak, B. K. & Ganesan, T. (2016). Antifungal activity of soil actinomycetes from the mangrove Avicennia marina. J. Med. Plants Stud, 4, 05-08.
Lam, K. (2007). New aspects of natural products in drug discovery. Trends in Microbiology, 15(6), 279–289. https://doi.org/10.1016/j.tim.2007.04.001.
Lázár, V., Martins, A., Spohn, R., Daruka, L., Grézal, G., Fekete, G., Számel, M., Jangir, P. K., Kintses, B., Csörgő, B., Nyerges, Á., Györkei, Á., Kincses, A., Dér, A., Walter, F. R., Deli, M. A., Urbán, E., Hegedüs, Z., Olajos, G. & Pál, C. (2018). Antibiotic-resistant bacteria show
widespread collateral sensitivity to antimicrobial peptides. Nature Microbiology, 3(6), 718–731. https://doi.org/10.1038/s41564-018-0164-0
Maeda, T., Iwasawa, J., Kotani, H., Sakata, N., Kawada, M., Horinouchi, T., Sakai, A., Tanabe, K. & Furusawa, C. (2020). High-throughput laboratory evolution reveals
evolutionary constraints in Escherichia coli. Nature
Communications, 11(1), 5970.
Okami, Y. & Hotta, K. (1988). In: Actinomycetes in Biotechnology; Goodfellow, M.; Williams, ST; Mordarski, M.; Eds., 33-67.
Promnuan, Y., Promsai, S. & Meelai, S. (2020). Antimicrobial activity of Streptomyces spp. isolated from Apis
dorsata combs against some phytopathogenic bacteria. PeerJ, 8, e10512. https://doi.org/10.7717/peerj.10512.
Rana, K. L., Kour, D., Sheikh, I., Yadav, N., Yadav,
A. N., Kumar, V., Singh, B. P., Dhaliwal, H. S. & Saxena, A. K. (2019). Biodiversity of Endophytic Fungi from
Diverse Niches and Their Biotechnological Applications. In Fungal biology, 105-144. https://doi.org/10.1007/978-3-030-03589-1_6.
Roy, A., Khan, A., Ahmad, I., Alghamdi, S., Rajab, B. S., Babalghith, A. O., Alshahrani, M. Y., Islam, S. & Islam, M. R. (2022). Flavonoids a Bioactive Compound from
Medicinal Plants and Its Therapeutic Applications. BioMed
Research International, 2022, 1–9. https://doi.org/10.1155/2022/5445291
Sapkota, A., Thapa, A,. Budhathoki, A., Sainju, M., Shrestha, P. & Aryal, S. (2020). Isolation, characterization, and screening of antimicrobial-producing actinomycetes from soil samples, Int J Microbiol., 2020, 2716584. https://doi.org/10.1155/2020/2716584.
Selim, M. S. M., Abdelhamid, S. A. & Mohamed, S. S. (2021). Secondary metabolites and biodiversity of actinomycetes. Journal of Genetic Engineering and Biotechnology, 19(1), 72.
Serwecińska, L. (2020). Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water, 12(12), 3313. https://doi.org/10.3390/w12123313.
Singh, C., Parmar, R. S., Jadon, P. & Kumar, A. (2017). Optimization of cultural conditions for production of antifungal bioactive metabolites by Streptomyces spp. isolated from soil. International Journal of Current Microbiology and Applied Sciences, 6(2), 386-396.
Souque, C., Escudero, J. A. & MacLean, R. C. (2021). Integron activity accelerates the evolution of antibiotic resistance. eLife, 10. https://doi.org/10.7554/elife.624747.
Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and Therapeutics, 40(4), 277.
Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology, 173(2), 697-703.
Windels, E. M., Michiels, J. E., Fauvart, M., Wenseleers, T., Van den Bergh, B. & Michiels, J. (2019). Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. The ISME journal, 13(5), 1239-1251.
Zheng, J., Shang, Y., Wu, Y., Zhao, Y., Chen, Z., Wang, Q., Li, P., Sun, X., Xu, G., Wen, Z., Chen, J., Wang, Y., Wang, Z., Xiong, Y., Deng, Q., Qu, D. & Yu, Z. (2022). Loratadine inhibits Staphylococcus aureus virulence and biofilm formation. iScience (Cambridge), 25(2), 103731. https://doi.org/10.1016/j.isci.2022.103731.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)