A case-control study unravelling the prognostic significance of oxidative markers in polycystic ovary syndrome (PCOS) patients
Article Main
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrinological disorders in female. Reproductive organ is a metabolically active organ; hence reactive oxygen species (ROS) are inevitably generated during the physiological process. Studies have suggested that OS may affect female fertility by reproductive impairment, leading to alter ovulation patterns, oocyte maturation and steroidogenesis in women with PCOS. Thus, the present study aimed to assess the oxidative status of diagnosed PCOS women. Based on specific inclusion and exclusion criteria, 100 Subjects (Group – 1 PCOS N=50 , Group-2 Controls N=50) were enrolled with their written informed consent. Blood samples were collected in aseptic conditions for the estimation of hormonal parameters (Testosterone) and oxidative stress markers (MDA, SOD, Catalase, GSH, GSSG). The statistical analysis of data indicated significant elevated level of MDA, SOD, GSSG (5.21 vs 1.52 ; 248.15 vs166.15; 11.38 vs 4.37), while decreased level of catalase and GSH (37.57 vs 78.2; 84.09 vs 121.7) was observed in PCOS cases when compared to controls. The linear regression model showed significant R2 values for MDA, SOD and GSSG . Further ROC curve was plotted for MDA, SOD and GSSG to estimate the sensitivity of these predictive markers. OS damages oocyte and follicle growth in females, damaging the endometrium and affecting endocrine function. Significantly higher levels of MDA, SOD & GSSG were reported in cases, and catalase, GSH levels were decreased. Linear regression and ROC curve analysis indicated that these MDA, SOD, GSSG may act as significant predictive markers of OS playing a pivotal role in the pathophysiology underlying PCOS and as prognostic tools to reduce the severity of the disease.
Article Details
Article Details
Antioxidant, Oxidative stress , Polycystic ovary syndrome, Reduced Glutathione
Abuja, P. M. & Albertini, R. (2001). Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clinica Chimica Acta; International Journal of Clinical Chemistry, 306(1–2), 1–17. https://doi.org/10.1016/s0009-8981(01)00393-x.
Agarwal, A., Gupta, S. & Sharma, R. K. (2005). Role of oxidative stress in female reproduction. Reproductive Biology and Endocrinology: RB&E, 3(1), 28. https://doi.org/10.1186/1477-7827-3-28.
Allen, R. G. & Tresini, M. (2000). Oxidative stress and gene regulation. Free Radical Biology & Medicine, 28(3), 463–499. https://doi.org/10.1016/s0891-5849(99)00242-7
Alahmar AT & Sengupta P. (2021) Impact of coenzyme Q10 and selenium on seminal fluid parameters and antioxidant status in men with idiopathic infertility. Biol Trace Elem Res. ;199(4), 1246–52. https://doi.org/10.1007/s12011-020-02251-3
Behrman, H. R., Kodaman, P. H., Preston, S. L., & Gao, S. (2001). Oxidative stress and the ovary. Journal of the Society for Gynecologic Investigation, 8(1_suppl), S40–S42. https://doi.org/10.1177/1071557601008001s13.
Bellver, J., Melo, M. A., Bosch, E., Sewa, V., Remotin, J., & Pellier, A. (2007). Obesity and poor reproductive outcome; the potential role of the endometrium. Fertil Steril, 88(2), 446–451. https://doi.org/10.1016/j.fertnstert.2 006.11.162
Blair, S. A., Kyaw-Tun, T., Young, I. S., Phelan, N. A., Gibney, J., & McEneny, J. (2013). Oxidative stress and inflammation in lean and obese subjects with polycystic ovary syndrome. The Journal of Reproductive Medicine, 58(3–4), 107–114. PMID: 23539878.
Coskun, A., Arikan, T., Kilinc, M., & Cekerbicer, A. D. (2013). Plasma selenium levels in Turkish women with polycystic ovary syndrome . Eur.J.Obstet.Gynecol.Reprod.Biol, 168. https://doi.org/10.1016/j.ejogrb.2013.01.021
Darbandi M, Darbandi S, Agarwal A, Sengupta P, Durairajanayagam D, Henkel R, et al. (2018) Reactive oxygen species and male reproductive hormones. Reprod Biol Endocrinol., 16(1),87. https://doi.org/10.1186/s12958-018-0406-2
Dinger, Y., Akcay, T., Erdem, T., Saygili, I., & Gundogdu, E. (2005). DNA damage DNA susceptibility to oxidation and glutathione level in women with polycystic ovary syndrome. Scand J Clin Lab Invest, 65(8), 721–728. https://doi.org/10.1080/00365510500375263
Dumesic, D. A., Meldrum, D. R., Katz-Jaffe, M. G., Krisher, R. L. & Schoolcraft, W. B. (2015). Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertility and Sterility, 103(2), 303–316. https://doi.org/10.1016/j.fertnstert.2014.11.015.
Fan, P., Liu, H., Wang, Y., Zhang, F. & Bai, H. (2012). Apolipoprotein E-containing HDL-associated platelet-activating factor acetylhydrolase activities and malondialdehyde concentrations in patients with PCOS. Reproductive Biomedicine Online, 24(2), 197–205. https://doi.org/10.1016/j.rbmo.2011.10.010.
Fatim, Q., Amim, S., Kawa, I. A., Jeelani, H., Manzoor, S., Rizvi, S. M. & Rashid, F. (2019). Evaluation of antioxidants defense markers in relation to hormonal and insulinparameters in women with polycystic ovary syndrome (PCOS): A case-control study. Diab Metab. Syndr, 13, 1957–1961. https://doi.org/10.1016/j.dsx.2019.04.032
Forman, H. J. & Zhang, H. (2021). Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov , 20(9), 689–709. https://doi.org/10.1038/s41573-021-00233-1
Gurdol, F., Cimşit, M., Oner-Iyidoğan, Y., Körpinar, S., Yalçinkaya, S. & Koçak, H. (2008). Early and late effects of hyperbaric oxygen treatment on oxidative stress parameters in diabetic patients. Physiological Research, 57(1), 41–47. https://doi.org/10.33549/physiolres.931139.
Hassan, R. J. & Al-Husseini, A. M. H. (Eds.). (2019). Estimation of catalase activity and Malondialdehyde levels in blood groups ABO of PCOS patients”. In Journal of Physics: Conf. Series. http://doi.org/10.1088/1742-6596/1294/6/062100
Herman, R., Jensterle Sever, M., Janez, A. & Dolzan, V. (2020). Interplay between oxidative stress and chronic inflammation in PCOS: The role of genetic variability in PCOS risk and treatment responses. In Polycystic Ovarian Syndrome. IntechOpen.
Joo Yeon Lee, C.-K., Baw, S., Gupta, N. & Aziz, A. (2010). Role of Oxidative stress in Polycystic ovary syndrome, Current Women’s Health Reviews, 6, 96–107. http://dx.doi.org/10.2174/157340410791321336
Kaltsas, A., Zikopoulos, A., Moustakli, E., Zachariou, A., Tsirka, G., Tsiampali, C., Palapela, N., Sofikitis, N. & Dimitriadis, F. (2023). The silent threat to women’s fertility: Uncovering the devastating effects of oxidative stress. Antioxidants (Basel, Switzerland), 12(8). https://doi.org/10.3390/antiox12081490.
Konar, H. (2020). DC Dutta’s textbook of gynaecology (8th ed.). Jaypee Brothers Medical.
Kuscu, N. K. & Var, A. (2009). Oxidative stress but not endothelial dysfunction exists in non-obese, young group of patients with polycystic ovary syndrome. Acta Obstetricia et Gynecologica Scandinavica, 88(5), 612–617. https://doi.org/10.1080/00016340902859315.
Li, W., Liu, C., Yang, Q. Zhou, Y., Liu, M. & Shan, H. (2022). Oxidative stress and antioxidant inbalance in ovulation disorder in patients with polycystic ovary syndrome. Sec. Nutri and Metab. https://doi.org/10.3389%2Ffnut.2022.1018674
Macut, D., Simic, T., Lissounov, A., Pljesa-Ercegovac, M., Bozic, I., Djukic, T., Bjekic-Macut, J., Matic, M., Petakov, M., Suvakov, S., Damjanovic, S. & Savic-Radojevic, A. (2011). Insulin resistance in non-obese women with polycystic ovary syndrome: relation to byproducts of oxidative stress. Experimental and Clinical Endocrinology & Diabetes, 119(7), 451–455. https://doi.org/10.1055/s-0031-1279740.
Maha, A. H., Yahya, M., Maha, M., Ai-Khaduri, J. & Mostafa, I. (2018). Polycystic ovarian syndrome is linked to increased oxidative stress in Omani women. Int J Women’s Health, 10–763. https://doi.org/10.1096/fasebj.2018.32.1_supplement.787.11
Merendino, R. A., Salvo, F., Saija, A., Di Pasquale, G., Tomaino, A., Minciullo, P. L., Fraccica, G. & Gangemi, S. (2003). Malondialdehyde in benign prostate hypertrophy: a useful marker? Mediators of Inflammation, 12(2), 127–128. https://doi.org/10.1080/0962935031000097745.
Miyamoto, K., Sato, E. F., Kasahara, E., Jikumaru, M., Hiramoto, K., Tabata, H., Katsuragi, M., Odo, S., Utsumi, K. & Inoue, M. (2010). Effect of oxidative stress during repeated ovulation on the structure and functions of the ovary, oocytes, and their mitochondria. Free Radical Biology & Medicine, 49(4), 674–681. https://doi.org/10.1016/j.freeradbiomed.2010.05.025.
Mortada, R. & Williams, T. (2015). Metabolic syndrome: Polycystic ovary syndrome. FP Essentials, 435, 30–42.
Murri, M., Luque-Ramirez, M., Insenser, M., Ojeda-Ojeda, M. & Escobar-Morreale, H. F. (2013). Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS):a systematic review and meta-analysis. Human Reproduction Update, 19(3), 268–288. https://doi.org/10.1093/humupd/dms059
Sabuncu, T., Vural, H., Harma, M. & Harma, M. (2001). Oxidative stress in polycystic ovary syndrome and its contribution to the risk of cardiovascular disease. Clinical Biochemistry, 34(5), 407–413. https://doi.org/10.1016/s0009-9120(01)00245-4.
Seleem, A. K., El Refaeey, A. A., Shaalan, D., Sherbiny, Y. & Badawy, A. (2014). Superoxide dismutase in polycstic ovary syndrome patients undergoing intracytoplasmic sperm injection. J Assist Reprod Genet, 31, 499–504. https://doi.org/10.1007/s10815-014-0190-7
Sengupta P, Dutta S. & Hassa MF. (2024) Polycystic ovary syndrome (PCOS) and oxidative stress. Integr Sci Technol. ;12(3):752. https://doi.org/10.62110/sciencein.jist.2024.v12.752
Senoner, T. & Dichtl, W. (2019). Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients, 11(9), 2090. https://doi.org/10.3390/nu11092090
Shkolnik, K., Tadmor, A., Ben-Dor, S., Nevo, N., Galiani, D., & Dekel, N. (2011). Reactive oxygen species are indispensable in ovulation. Procedings of the National Academy of Sciences of the United States of America, 108(4), 1462–1467. https://doi.org/10.1073/pnas.1017213108
Skrgatic, L., Baldami, D. P. & Cerne, J. (2012). P&Gersak, K CAG repeat polymorphism in androgen receptor gene is not directly associated with polycystic ovary syndrome but influence serum testosterone levels. J Steriod Biochem.Mol.Biol, 128. https://doi.org/10.1016/j.jsbmb.20 11.11.006
Talat, A., Satyanarayana, P. & Anand, P. (2022). Association of superoxide dismutase level in women with polycystic ovary syndrome. Journal of Obstetrics and Gynaecology of India, 72(1), 6–12. https://doi.org/10.1007/s13224-021-01430-z.
Turan, E. D., V., Sezer, B. & Zeybek, F. (2015). Infertility and the presence of insulin resistance are associated with increased oxidative stress in young ,non-obese Turkish women with polycystic ovary syndrome. J Pediat and Adolescent Gynec, 28(2), 119–123. https://doi.org/10.1016/j.jpag.2014.05.003
Uckan, K., Demir, H., Turan, K., Sarikaya, E. & Demir, C. (2022). Role of Oxidative stress in Obese and Non-obese PCOS Patients. Int J of Clin Pract. https://doi.org/10.1155/2022/4579831
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M. & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001.
Zhang D., Luo W.-Y., Liao H., Wang C. F. & Sun Y. (2008). The effects of oxidative stress to PCOS. Sichuan da xue xue bao. Yi xue ban, Journal of Sichuan University. Medical science edition, 39(3), 421–423.
Zhang, J.; Bao, Y.; Zhou, X. & Zheng, L. (2019) Polycystic ovary syndrome and mitochondrial dysfunction. Reprod. Biol. Endocrinol.17, 1–15 https://doi.org/10.1186%2Fs12958-019-0509-4
Zuo, T., Zhu, M. & Xu, W. (2016). Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxidative Medicine and Cellular Longevity, 2016, 8589318. https://doi.org/10.1155/2016/8589318.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)