##plugins.themes.bootstrap3.article.main##

Debashis Mandal Nchumbeni Ennio Noel Lalhruaitluangi Lalrinchhani Agnes Vanlalnghaki Fanai

Abstract

Melatonin is a pleiotropic molecule which plays a pivotal role in extending shelf life and maintaining the postharvest quality of fruit. Pineapple fruits harvested at different stages of maturity had marked variations in physico-biochemical qualities and shelf life during storage. The present study aimed to determine the potential effectiveness of different concentrations of postharvest melatonin applications on pineapple cv. Kew fruit in ambient storage. Different concentrations of melatonin (MT) solution viz. T1: MT at 0.25mM, T2: MT at 0.5 mM, T3: MT at 1 mM, T4: MT at 2 mM, T5: MT at 4 mM and T6: MT at 8 mM were used for the study and compared with T7: untreated fruits (control). At 20 days after storage, fruits dipped in 8 mM melatonin resulted in lowest physiological weight loss (11.84%), fruit decay (13.33%), decrease in fruit length (3.29%) and diameter (3.42%), juice content (58.27%), titratable acidity (0.91%), flesh translucency (2.0) and crown condition (2.6) these resulted in the decrease with the increase in concentration of melatonin. Maximum shelf life (23.33 days), fruit firmness (39.24 Ncm2), TSS (10.3⁰Brix), total sugar (10.10%), reducing sugar (8.85%), TSS: Acid ratio (11.30), ascorbic acid (19.3 mg 100g-1), total Carbohydrate (10.08%), total phenol (35.64mg 100g-1) and antioxidant activity (48.14%) increased depending on increment in melatonin concentration as compared to control. Results of the study showed that Melatonin @ 8mM has a marked influence in extending the shelf life while maintaining the physico-chemical quality of stored pineapple and thus can be a good option in using the technique for commercial shelf life extension in ambient conditions.  


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Biochemicals, Melatonin, Physico-chemical changes, Pineapple, Quality, Shelf life

References
Aghdam, M.S. & Fard, J.R. (2017). Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria anannasa cv. Selva) by enhancing GABA shunt activity. Food Chemistry, 221, 1650-1657. https://doi.org/10.1016/j.foodchem.20 16.10.123
Anonymous (2018). Horticulture statistics at a glance 2018. National Horticulture Board, Horticulture Statictics Division, Ministry of Agriculture & Farmers' Welfare, Government of India.
Anonymous (2021). Agricultural Statistics at a Glance. Directorate of Economics and Statistics, Department of Agriculture and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Government of India. Retrieved from (https://desagri.gov.in/wp-content/uploads/2021/07/Agricultural-Statistics-at-a-Glance-2021-English-version.pdf).
AOAC (1990). Official methods of the analysis.15th Ed. Association of Analytical Chemists, Washington DC, USA.
Ba, L.J., Cao, S., Ji, N., Ma, C., Wang, R. & Luo, D.L. (2022). Effects of melatonin treatment on maintenance of the quality of fresh-cut pitaya fruit. International Food Research Journal, 29, 796-805.
Badiche-El Hilali, F., Valverde, J.M., García-Pastor, M.E., Serrano, M., Castillo, S. & Valero, D. (2023). Melatonin Postharvest Treatment in Leafy ‘Fino’ Lemon Maintains Quality and Bioactive Compounds. Foods, 12, 2979. https://doi.org/10.3390/foods12152979
Cao, S., Song, C., Shao, J., Bian, K., Chen, W. & Yang, Z. (2016). Exogenous melatonin treatment increases chilling tolerance and induces defense response in harvested peach fruit during cold storage. Journal of Agricultural and Food Chemistry, 64, 5215-5222. https://doi.org/10.1021/acs.jafc.6b01118
Cao, S.F., Shao, J.R., Shi, L.Y., Xu, L.W., Shen, Z.M., Chen, W. & Yang, Z. (2018). Melatonin increases chilling tolerance in postharvest peach fruit by alleviating oxidative damage. Scientific Reports, 8, 806. https://doi.org/10.1038/s41598-018-19363-5
Chen, C.C. & Paull, R.E. (2001). Fruit temperature and crown removal on the occurrence of pineapple fruit translucency. Scientia Horticulturae, 88, 85–95. https://doi.org/10.1016/S0304-4238(00)00201-6
Chen, Y., Zhang, Y., Nawaz, G., Zhao, C., Li, Y., Dong, T., Zhu, M., Du, X., Zhang, L., Li, Z. & Xu, T. (2020). Exogenous melatonin attenuates postharvest decay by increasing antioxidant activity in wax apple (Syzygium samarangense). Frontiers in Plant Science, 11, 569779. https://doi.org/10.3389/fpls.2020.569779
Choudhary, M.L., Dikshit, S.N., Shukla, N. & Saxena, R.R. (2008). Evaluation of guava (Psidium guajava L.) varieties and standardization of recipe for nectar preparation. Journal of Horticultural Sciences, 3, 161-163.
Dhar, M., Rahman, S.M. & Sayem, S.M. (2008). Maturity and post harvest study of pineapple with quality and shelf life under red soil. International Journal of Sustainable Crop Production, 3(2), 69-75.
Fan, S., Xiong, T., Lei, Q., Tan, Q., Cai, J., Song, Z., Yang, M., Chen, W., Li, X. & Zhu, X. (2022). Melatonin treatment improves postharvest preservation and resistance of guava fruit (Psidium guajava L.). Foods, 11(3), 262. https://doi.org/10.3390/foods11030262
Galano, A., Tan, D.X. & Reiter, R.J. (2011). Melatonin as a natural ally against oxidative stress: a physicochemical examination. Journal of Pineal Research, 51, 1-16. https://doi.org/10.1111/j.1600-079X.2011.00916.x
Gao, H., Lu, Z.M., Yang, Y., Wang, D.N., Yang, T., Cao, M.M. & Cao, W. (2018). Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry, 245, 659-666. https://doi.org/10.1016/j.foodchem.2017.10.008
Gao, H., Zhang, Z.K., Chai, H.K., Cheng, N., Yang, Y., Wang, D.N., Yang, T. & Cao, W. (2016). Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biology and Technology, 118, 103-110. https://doi.org/10.1016/j.postharvbio.2016.03.006
Gomez, K.A. & Gomez, A.A. (1984). Statistical Procedure for Agricultural Research. 2nd Ed. John willey and Sons, New York.
Guillen, F., Santamarina, J.M., Garcia-Pastor, M.E., Chen, N.J., Uruu, G. & Paull, R.E. (2022). Postharvest melatonin treatment delays senescence and increases chilling tolerance in pineapple. LWT Food Science and Technology, 169, 113989. https://doi.org/10.1016/j.lwt.2022.113989
Hong, K., Xu, H., Wang, J., Zhang, L., Hu, H., Jia, Z., Gu, H., He, Q. & Gong, D. (2013). Quality changes and internal browning developments of summer pineapple fruit during storage at different temperatures. Scientia Horticulturae, 151, 68–74. https://doi.org/10.1016/j.scienta.2012.12.016
Hossain, M. & Bepary, R.H. (2015). Postharvest Handling of Pineapples: A Key Role to Minimize the Postharvest Loss. International Journal of Recent Scientific Research, 6, 6069-6075.
Hu, M., Li, J. & Rao, J. (2018). Effect of melatonin on ripening and senescence of postharvest kiwifruits. Food Science, 39: (2018) 226-232.
Hu, W., Yang, H., Tie, W., Yan, Y., Ding, Z., Liu, Y., Wu, C., Wang, J., Reiter, R.J. & Tan, D.X. (2017). Natural variation in banana varieties highlights the role of melatonin in postharvest ripening and quality. Journal of Agricultural and Food Chemistry, 65, 9987-9994. https://doi.org/10.1021/acs.jafc.7b03354
Joy, P.P. & Rajuva, R.T.A. (2016). Harvesting and postharvest handling of pineapple. Pineapple Research Station (Kerala Agricultural University). Retrieved from ( http://prsvkm.kau.in).
Kamol, S.I., Howlader, J., Sutra Dhar, G.C. & Aklimuzzaman, M. (2014). Effect of different stages of maturity and postharvest treatments on quality and storability of pineapple. Journal of the Bangladesh Agricultural University, 12(2), 251-260. DOI: 10.22004/ag.econ.211237
Kuang, X., Wang, C., Xiang, M., Deng, L. & Deng, Y.Q. (2008). The impact of deethylene on Yangmei’s postharvest physiology and preservation. Chinese Agricultural Science Bulletin, 24, 247-251.
Li, M., Li, X., Jing, L., Ji, Y., Han, C., Jin, P. & Zheng, Y. (2018). Responses of fresh-cut strawberries to ethanol vapor pretreatment: Improved quality maintenance and associated antioxidant metabolism in gene expression and enzyme activity levels. Journal of Agricultural and Food Chemistry, 66, 8382-8390. https://doi.org/10.1021/acs.jafc.8b02647
Li, T., Wu, Q., Zhu, H., Zhou, Y., Jiang, Y., Gao, H. & Yun, Z. (2019). Comparative transcriptomic and metabolic analysis reveals the effect of melatonin on delaying anthracnose incidence upon postharvest banana fruit peel. BMC Plant Biology, 19, 289. https://doi.org/10.1186/s12870-019-1855-2
Liang, C., Zheng, G., Li, W., Wang, Y., Hu, B. & Wang, H. (2015). Melatonin delays leaf senescence and enhances salt stress tolerance in rice. Journal of Pineal Research, 59, 91-101. https://doi.org/10.1111/jpi.12243
Liu, C., Zheng, H., Sheng, K., Liu, W. & Zheng, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139, 47-55. https://doi.org/10.1016/j.postharvbio.2018.01.016
Liu, J., Yang, J., Zhang, H., Cong, L., Zhai, R., Yang, C., Wang, Z., Ma, F. & Xu, L. (2019). Melatonin inhibits ethylene synthesis via nitric oxide regulation to delay postharvest senescence in pears. Journal of Agricultural and Food Chemistry, 67, 2279-2288. https://doi.org/10.1021/acs.jafc.8b06580
Liu, S., Huang, H., Huber, D.J., Pan, Y., Shi, X. & Zhang, Z. (2020). Delay of ripening and softening in ‘Guifei’ mango fruit by postharvest application of melatonin. Postharvest Biology and Technology, 163, 111136. https://doi.org/10.1016/j.postharvbio.2020.111136
Lufu, R., Ambaw, A. & Opara, U.L. (2019). The contribution of transpiration and respiration processes in the mass loss of pomegranate fruit (cv. Wonderful). Postharvest Biology & Technology, 157, 110982. https://doi.org/10.1016/j.postharvbio.2019.110982
Mandal, D. & Vanlalawmpuia, C. (2020). Impact of postharvest use of essential oils on quality and shelf life of Indian pineapple. Journal of Postharvest Technology, 8(3), 96-105.
Mandal, D., Lalremruata, Hazarika, T.K. & Nautiyal, B.P. (2015). Effect of postharvest treatments on quality and shelf life of pineapple (Ananas comosus [L.] Merr. ‘Giant Kew’) fruits at ambient storage condition. International Journal of Bio-resource and Stress Management, 6(4), 490-496. DOI: 10.5958/0976-4038.2015.00072.X
Mukherjee, S. (2019). Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants. Nitric Oxide, 82, 25-34. https://doi.org/10.1016/j.niox.2018.11.003
Ningombam, S., Noel, A. & Singh, J. (2019). Postharvest losses of pineapple at various stages of handling from the farm level up to the consumer in Manipur. International Journal of Agriculture Sciences, 11, 9235-9237.
Onik, J.C., Wai, S.C., Li, A., Lin, Q., Sun, Q., Wang, Z. & Duan, Y. (2021). Melatonin treatment reduces ethylene production and maintains fruit quality in apple during postharvest storage. Food Chemistry, 337, 127753. https://doi.org/10.1016/j.foodchem.2020.127753
Paull, R.E. (1993). Pineapple and papaya. In: Biochemistry of fruit ripening (pp.291-323). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1584-1_10
Pekkarinen, S.S., Stockmann, H., Schwarz, K., Heinonen, I.M. & Hopia, A.I. (1999). Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate. Journal of Agricultural and Food Chemistry, 47, 3036–3043. https://doi.org/10.1021/jf9813236
Pila, N., Neeta, B.G. & Rao, T.V.R. (2010). Effect of Post harvest treatments on physico chemical characteristics and shelf life of tomato (Lycopersicon eseulentum Mill.) fruits during storage. American-Eurasian Journal of Agriculture and Environmental Sciences, 9, 470-479.
Puerta-Gomez, A.F. & Cisneros-Zevallos, L. (2011). Postharvest studies beyond fresh market eating quality: phytochemical antioxidant changes in peach and plum fruit during ripening and advanced senescence. Postharvest Biology and Technology, 60, 220-224. https://doi.org/10.1016/j.postharvbio.2011.01.005
Ranganna, S. (1997). Handbook of Analysis and Quality Control for Fruits and Vegetable Products. Tata McGraw Hill Publishing Co. Ltd., New Delhi.
Rastegar, S., Khankahdani, H.H. & Rahimzadeh, M. (2020). Effect of melatonin treatment on the biochemical changes and antioxidant enzyme activity of mango fruit during storage. Scientia Horticulturae, 259, 108835. https://doi.org/10.1016/j.scienta.2019.108835
Reiter, R.J., Manchester, L.C. & Tan, D.X. (2005). Melatonin in walnuts: Influence on levels of melatonin and total antioxidant capacity of blood. Nutrition, 21(9), 920-924. https://doi.org/10.1016/j.nut.2005.02.005
Reiter, R.J., Tan, D.X., Cabrera, J., D’Arpa, D., Sainz, R.M. & Mayo, J.C. (1999). The oxidant/antioxidant network: Role of melatonin. Biological Signals and Receptors, 8, 56-63. https://doi.org/10.1159/000014569
Remon, S., Venturini, M.E., Lopez-Buesa, P. & Oria, R. (2003). Burlat cherry quality after long range transport: optimisation of packing conditions. Innovative Food Science and Emerging Technology, 4, 425-434. https://doi.org/10.1016/S1466-8564(03)00058-4
Sadasivam, S. & Manickam, A. (1996). Biochemical Methods. New Age International (P) Limited, New Delhi.
Sae-Teaw, M., Johns, J., Johns, N.P. & Subongkot, S. (2013). Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers. Journal of Pineal Research, 55(1), 58-64. https://doi.org/10.1111/jpi.12025
Sayka, M.I., Shamsun, N., Jahid, M.M.I., Mahfuza, I., Hoque, M.M., Hoque, R. & Khan, M.A. (2014). Effect of low molecular weight chitosan coating on physico-chemical properties and shelf life extension of pineapple. Journal of Forest Products and Industries, 3, 161-166.
Sema, A., Maiti, C.S. & Dietholhou. (2011). Pineapple Cultivation in North East India- A Prospective Venture. Acta Horticulturae, 902, 69-78. https://doi.org/10.17660/ActaHortic.2011.902.4
Sharafi, Y., Jannatizadeh, A., Fard, J.R. & Aghdam, M.S. (2021). Melatonin treatment delays senescence and improves antioxidant potential of sweet cherry fruits during cold storage. Scientia Horticulturae, 288, 110304. https://doi.org/10.1016/j.scienta.2021.110304
Song, L.L., Wang, J.H., Shafi, M., Liu, Y., Wang, J., Wu, J.S. & Wu, A. (2016). Hypobaric treatment effects on chilling injury, mitochondrial dysfunction, and the ascorbate-glutathione (ASA-GSH) cycle in postharvest peach fruit. Journal of Agricultural and Food Chemistry, 64, 4665-4674. https://doi.org/10.1021/acs.jafc.6b00623
Sun, Q., Zhang, N., Wang, J., Zhang, H., Li, D. & Shi, J. (2015). Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. Journal of Experimental Botany, 66(3), 657-668. https://doi.org/10.1093/jxb/eru332
Tan, D.X., Reiter, R.J., Manchester, L.C., Yan, M.T., El-Sawi, M. & Sainz, R.M. (2002). Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Current Topics in Medicinal Chemistry, 2(2), 181-197. DOI: 10.2174/1568026023394443
Tijero, V., Muñoz, P. & Munné-Bosch, S. (2019). Melatonin as an inhibitor of sweet cherries ripening in orchard trees. Plant Physiology and Biochemistry, 140, 88-95. https://doi.org/10.1016/j.plaphy.2019.05.007
Wang, D., Randhawa, M.S., Azam, M., Liu, H., Ejaz, S., Ilahy, R., Qadri, R., Khan, M.I., Umer, M.A., Khan, M.A. & Wang, K. (2022). Exogenous melatonin treatment reduces postharvest senescence and maintains the quality of papaya fruit during cold storage. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1039373
Wang, J.Z., Zhang, S.L., Zhou, Q., Tao, S.T., Shahrokh, K., & Ye, Y.X. (2012). The effect of six postharvest treatment methods on strawberry fruit quality. Food Research and Development, 33, 179-181.
Wu, C., Cao, S., Xie, K., Chi, Z., Wang, J. and Wang, H. (2020). Melatonin delays yellowing of broccoli during storage by regulating chlorophyll catabolism and maintaining chloroplast ultrastructure. Postharvest Biology and Technology, 172, 111378. https://doi.org/10.1016/j.postharvbio.2020.111378
Ze, Y., Gao, H., Li, T., Yang, B. & Jiang, Y. 2021. Insights into the roles of melatonin in maintaining quality and extending shelf life of postharvest fruits. Trends in Food Science and Technology, 109, 569–578. https://doi.org/10.1016/j.tifs.2021.01.051
Zhai, R., Liu, J.L., Liu, F.X., Zhao, Y.X., Liu, L.L., Fang, C., Wang, H., Li, X., Wang, Z., Ma, F. & Xu, L. (2018). Melatonin limited ethylene production, softening and reduced physiology disorder in pear (Pyrus communis L.) fruit during senescence. Postharvest Biology and Technology, 139, 38-46. https://doi.org/10.1016/j.postharvbio.2018.01.017
Zhang, Y., Huber, D.J., Hu, M., Jiang, G., Gao, Z., & Xu, X. (2018). Delay of postharvest browning in Litchi fruit by melatonin via the enhancing of antioxidative processes and oxidation repair. Journal of Agricultural and Food Chemistry, 66, 7475-7484. https://doi.org/10.1021/acs.jafc.8b01922
Zhang, Z., Wang, T., Liu, G., Hu, M., Yun, Z., Duan, X., Cai, K. & Jiang, G. (2021). Inhibition of downy blight and enhancement of resistance in litchi fruit by postharvest application of melatonin. Food Chemistry, 347, 129009. https://doi.org/10.1016/j.foodchem.2021.129009
Section
Research Articles

How to Cite

Response of melatonin on postharvest qualities and shelf life of pineapple cv. Kew at ambient storage. (2024). Journal of Applied and Natural Science, 16(2), 794-804. https://doi.org/10.31018/jans.v16i2.5562